Learn More
We present a system that composes a realistic picture from a simple freehand sketch annotated with text labels. The composed picture is generated by seamlessly stitching several photographs in agreement with the sketch and text labels; these are found by searching the Internet. Although online image search generates many inappropriate results, our system is(More)
Colorization of a grayscale photograph often requires considerable effort from the user, either by placing numerous color scribbles over the image to initialize a color propagation algorithm, or by looking for a suitable reference image from which color information can be transferred. Even with this user supplied data, colorized images may appear unnatural(More)
We present a novel video stabilization method which models camera motion with a bundle of (multiple) camera paths. The proposed model is based on a mesh-based, spatially-variant motion representation and an adaptive, space-time path optimization. Our motion representation allows us to fundamentally handle parallax and rolling shutter effects while it does(More)
We present a linear method for global camera pose registration from pair wise relative poses encoded in essential matrices. Our method minimizes an approximate geometric error to enforce the triangular relationship in camera triplets. This formulation does not suffer from the typical `unbalanced scale' problem in linear methods relying on pair wise(More)
In this paper, we propose a semi-automatic technique for modeling plants directly from images. Our image-based approach has the distinct advantage that the resulting model inherits the realistic shape and complexity of a real plant. We designed our modeling system to be interactive, automating the process of shape recovery while relying on the user to(More)
This paper addresses how to model and correct image blur that arises when a camera undergoes ego motion while observing a distant scene. In particular, we discuss how the blurred image can be modeled as an integration of the clear scene under a sequence of planar projective transformations (i.e., homographies) that describe the camera's path. This(More)
In this paper we propose a novel alpha matting method with local and nonlocal smooth priors. We observe that the manifold preserving editing propagation [4] essentially introduced a nonlocal smooth prior on the alpha matte. This nonlocal smooth prior and the well known local smooth prior from matting Laplacian complement each other. So we combine them with(More)
This paper addresses the problem of modeling and correcting image blur caused by camera motion that follows a projective motion path. We introduce a new Projective Motion Blur Model that treats the blurred image as an integration of a clear scene under a sequence of projective transformations that describe the camera’s path. The benefits of this motion blur(More)
3D reconstruction from an unordered set of images may fail due to incorrect epipolar geometries (EG) between image pairs arising from ambiguous feature correspondences. Previous methods often analyze the consistency between different EGs, and regard the largest subset of self-consistent EGs as correct. However, as demonstrated in [14], such a largest(More)
In this paper, we propose an approach for generating 3D models of natural-looking trees from images that has the additional benefit of requiring little user intervention. While our approach is primarily image-based, we do not model each leaf directly from images due to the large leaf count, small image footprint, and widespread occlusions. Instead, we(More)