Learn More
Signal transducers and activators of transcription (STAT) were originally discovered as components of cytokine signal transduction pathways. Persistent activation of one of these transcription factors, STAT3, is a feature of many malignancies, including hormone-resistant prostate cancer. In this regard, malignant cells expressing persistently activated(More)
PGE2 has been implicated in prostate cancer tumorigenesis. We hypothesized that abnormal prostaglandin receptor (EPR) expression may contribute to prostate cancer growth. Twenty-six archived radical prostatectomy specimens were evaluated by immunohistochemistry (IHC) and Western blotting for the expression of EP1, EP2, EP3, and EP4. As a corollary, EPR(More)
Signal transducers and activators of transcription (STATs) are involved in growth regulation of cells. They are usually activated by phosphorylation at specific tyrosine residues. In neoplastic cells, constitutive activation of STATs accompanies growth dysregulation and resistance to apoptosis through changes in gene expression, such as enhanced(More)
BACKGROUND Eicosanoids are generally recognized to exert potent immunomodulatory properties, including effects on T cell, antigen-presenting cell (APC), and dendritic cell (DC) maturation and function. Since DC maturation and function may also be regulated by store-operated calcium entry (SOCE), we hypothesized that the effects of eicosanoids on DC function(More)
Consecutive homologous codons that are rarely used in E. coli are known to inhibit translation to varying degrees. As few as two consecutive rare arginine codons exhibit a profound inhibition of translation when they are located in the 5' portion of a gene in E. coli. We have previously shown that nine consecutive rare CUA leucine codons cause almost(More)
Previously published experiments had indicated unexpected expression of a control vector in which a beta-galactosidase reporter was in the +1 reading frame relative to the translation start. This control vector contained the codon pair CCC CGA in the zero reading frame, raising the possibility that ribosomes rephased on this sequence, with(More)
Nitric oxide (NO) modulates many physiological events through production of cGMP from its receptor, the NO-sensitive guanylyl cyclase (GC1). NO also appears to function in a cGMP independent manner, via S-nitrosation (SNO), a redox-based modification of cysteine thiols. Previously we have shown that S-nitrosated GC1 (SNO-GC1) is desensitized to NO(More)
  • 1