Learn More
The efficiency of physical separation of inclusion bodies from cell debris is related to cell debris size and inclusion body release and both factors should be taken into account when designing a process. In this work, cell disruption by enzymatic treatment with lysozyme and cellulase, by homogenization, and by homogenization with ammonia pretreatment is(More)
The desired product of bioprocesses is often produced in particulate form, either as an inclusion body (IB) or as a crystal. Particle harvesting is then a crucial and attractive form of product recovery. Because the liquid phase often contains other bioparticles, such as cell debris, whole cells, particulate biocatalysts or particulate by-products, the(More)
The interfacial partitioning behavior of ampicillin and phenylglycine crystals in different two-phase systems has been investigated. The two-phase systems employed are water/dodecane, water/1-butanol, and water/pentane/methanol. By means of partition experiments and microscopic imaging, it has been shown that the mechanism of separation strongly depends on(More)
Quantification of solid cell material (cell debris) is necessary for the optimisation of the efficiency of bioseparations. Cell debris can be quantified by detection of a component present in the cell wall that can act as a marker for cell debris. Membrane-associated proteins have previously been used as a marker for cell debris. This marker was quantified(More)
Selective dissolved-air flotation for the separation of medium-chain-length polyhydroxyalkanoate (PHA) inclusion bodies (IBs) from Pseudomonas putida cell debris is investigated. Measurements show that both P. putida cell debris and PHA IBs have an iso-electric point of approximately pH 3.5. Selective aggregation and as a result selective flotation of PHA(More)
  • 1