Pietro Scatturin

Learn More
Motion artifacts are a significant source of noise in many functional near-infrared spectroscopy (fNIRS) experiments. Despite this, there is no well-established method for their removal. Instead, functional trials of fNIRS data containing a motion artifact are often rejected completely. However, in most experimental circumstances the number of trials is(More)
We propose a new probe placement method for multichannel functional Near Infrared Spectroscopy (fNIRS) based on the ICBM152 template, the most commonly used reference brain for neuroimaging. Our method is based on the use of a physical model of the ICBM152 head surface as reference scalp and its validity is supported by previous investigations of(More)
In the task-switching paradigm, reaction time is longer and accuracy is worse in switch trials relative to repetition trials. This so-called switch cost has been ascribed to the engagement of control processes required to alternate between distinct stimulus-response mapping rules. Neuroimaging studies have reported an enhanced activation of the human(More)
Functional near-infrared spectroscopy (fNIRS) is a neuroimaging technique that measures changes in oxy-hemoglobin (ΔHbO) and deoxy-hemoglobin (ΔHbR) concentration associated with brain activity. The signal acquired with fNIRS is naturally affected by disturbances engendering from ongoing physiological activity (e.g., cardiac, respiratory, Mayer wave) and(More)
Functional near-infrared spectroscopy (fNIRS) uses near-infrared light to measure cortical concentration changes in oxygenated (HbO) and deoxygenated hemoglobin (HbR) held to be correlated with cognitive activity. Providing a parametric depiction of such changes in the classic form of stimulus-evoked hemodynamic responses (HRs) can be attained with this(More)
Neuroimaging studies attempting to isolate the neural substrate of visual short-term memory in humans have concentrated on the behavior of neurons populating the posterior part of the parietal cortex as a possible source of visual short-term memory capacity limits. Using a standard change-detection task, fMRI studies have shown that maintenance of(More)
For over two decades Virtual Reality (VR) has been used as a useful tool in several fields, from medical and psychological treatments, to industrial and military applications. Only in recent years researchers have begun to study the neural correlates that subtend VR experiences. Even if the functional Magnetic Resonance Imaging (fMRI) is the most common and(More)
Interactions between numbers and space have become a major issue in cognitive neuroscience, because they suggest that numerical representations might be deeply rooted in cortical networks that also subserve spatial cognition. The spatial-numerical association of response codes (SNARC) is the most robust and widely replicated demonstration of the link(More)
The capacity to devote attentional resources in response to body-related signals provided by others is still largely unexplored in individuals with Anorexia Nervosa (AN). Here, we tested this capacity through a novel paradigm that mimics a social interaction with a real partner. Healthy individuals (Experiment 1) and individuals with AN (Experiment 2)(More)
Studies employing functional magnetic resonance imaging (fMRI) have highlighted a covariation between the amplitude of hemodynamic responses recorded in primary and supplementary motor areas (M1 and SMA) and the duration of a motor task. A subset of these studies have hinted to a possible functional dissociation between processing carried out in these(More)