Learn More
Abstracf-The scale-space technique introduced by Witkin involves generating coarser resolution images by convolving the original image with a Gaussian kernel. This approach has a major drawback: it is difficult to obtain accurately the locations of the " semantically meaningful " edges at coarse scales. In this paper we suggest a new definition of(More)
—We present a new dataset with the goal of advancing the state-of-the-art in object recognition by placing the question of object recognition in the context of the broader question of scene understanding. This is achieved by gathering images of complex everyday scenes containing common objects in their natural context. Objects are labeled using per-instance(More)
A new bottom-up visual saliency model, Graph-Based Visual Saliency (GBVS), is proposed. It consists of two steps: rst forming activation maps on certain feature channels, and then normalizing them in a way which highlights conspicuity and admits combination with other maps. The model is simple, and biologically plausible insofar as it is naturally(More)
Current computational approaches to learning visual object categories require thousands of training images, are slow, cannot learn in an incremental manner and cannot incorporate prior information into the learning process. In addition, no algorithm presented in the literature has been tested on more than a handful of object categories. We present an method(More)
We present a method to learn and recognize object class models from unlabeled and unsegmented cluttered scenes in a scale invariant manner. Objects are modeled as flexible constellations of parts. A probabilistic representation is used for all aspects of the object: shape, appearance, occlu-sion and relative scale. An entropy-based feature detector is used(More)
Pedestrian detection is a key problem in computer vision, with several applications that have the potential to positively impact quality of life. In recent years, the number of approaches to detecting pedestrians in monocular images has grown steadily. However, multiple data sets and widely varying evaluation protocols are used, making direct comparisons(More)
We propose a novel approach to learn and recognize natural scene categories. Unlike previous work, it does not require experts to annotate the training set. We represent the image of a scene by a collection of local regions, denoted as codewords obtained by unsupervised learning. Each region is represented as part of a "theme". In previous work, such themes(More)
Multi-resolution image features may be approximated via extrapolation from nearby scales, rather than being computed explicitly. This fundamental insight allows us to design object detection algorithms that are as accurate, and considerably faster, than the state-of-the-art. The computational bottleneck of many modern detectors is the computation of(More)
We study a number of open issues in spectral clustering: (i) Selecting the appropriate scale of analysis, (ii) Handling multi-scale data, (iii) Clustering with irregular background clutter, and, (iv) Finding automatically the number of groups. We first propose that a 'local' scale should be used to compute the affinity between each pair of points. This(More)
CUB-200-2011 is an extended version of CUB-200 [7], a challenging dataset of 200 bird species. The extended version roughly doubles the number of images per category and adds new part localization annotations. All images are annotated with bounding boxes, part locations, and attribute labels. Images and annotations were filtered by multiple users of(More)