Pietro Monforte

Learn More
Design, synthesis and anti-HIV activity of a series of 2,3-diaryl-1,3-thiazolidin-4-ones are reported. Some derivatives proved to be highly effective in inhibiting HIV-1 replication at nanomolar concentrations thereby acting as non-nucleoside HIV-1 RT inhibitors (NNRTIs). SAR studies evidenced that the nature of the substituents at the 2 and 3 positions of(More)
Starting from 1H,3H-thiazolo[3,4-a]benzimidazoles (TBZs), we performed the design, synthesis, and the structure-activity relationship studies of a series of 2,3-diaryl-1,3-thiazolidin-4-ones. Some derivatives proved to be highly effective in inhibiting HIV-1 replication at nanomolar concentrations with minimal cytotoxicity, thereby acting as nonnucleoside(More)
A three-dimensional common feature pharmacophore model was developed using the X-ray structure of RT/non-nucleoside inhibitor (NNRTI) complexes. Starting from the pharmacophore hypothesis and the structure of the lead compound TBZ, new NNRTIs were designed and synthesized, having the benzimidazol-2-one system as a scaffold. Docking experiments showed that(More)
A series of 1-aryl-1H,3H-thiazolo[3,4-a]benzimidazoles were synthesized by one-pot reaction from o-phenylenediamine, 2-mercaptoacetic acid and a variety of aromatic aldehydes. All compounds obtained were evaluated for antiviral activity against human immunodeficiency virus (HIV). Compounds 4g, 4i, 4j, 4l and 4q exhibit reproducible in vitro anti-HIV(More)
A series of 1H,3H-thiazolo[3,4-a]benzimidazoles were synthesized and tested for their in vitro antitumour activity against 60 human tumour cell lines. Some derivatives exhibited both tumour growth inhibition activity and cellular selectivity. In particular, compound 8c, the most active of the series, was very active towards all cell lines at concentrations(More)
We describe the use of pharmacophore modeling as an efficient tool in the discovery of novel HIV-1 integrase (IN) inhibitors. A three-dimensional hypothetical model for the binding of diketo acid analogues to the enzyme was built by means of the Catalyst program. Using these models as a query for virtual screening, we found several compounds that contain(More)
Several 1,3-thiazolidin-4-ones bearing a 2,6-dihalophenyl group at C-2 and a substituted pyrimidin-2-yl ring at the N-3 were synthesised and evaluated as anti-HIV agents. The results of the in vitro tests showed that some of them were highly effective inhibitors of human immunodeficiency virus type-1 (HIV-1) replication at 10-40 nM concentrations with(More)
Several 2,3-diaryl-1,3-thiazolidin-4-ones were synthesized and evaluated as anti-HIV agents. The results of the in vitro tests showed that some of them were highly effective inhibitors of HIV-1 replication at 30-50 nM concentrations with minimal cytotoxicity, thereby acting as non-nucleoside HIV-1 reverse transcriptase inhibitors (NNRTIs).
Using a known human immunodeficiency virus type 1 (HIV-1) non-nucleoside reverse transcriptase inhibitor (NNRTI), 1-(2,6-difluorophenyl)-1H,3H-thiazolo[3,4-a]benzimidazole (TBZ NSC 625487) as the lead structure for drug design, a series of novel 1H,3H-thiazolo[3,4-a]benzimidazole derivatives substituted on the benzene-fused ring was prepared. Their in vitro(More)