Pietro Monforte

Learn More
Design, synthesis and anti-HIV activity of a series of 2,3-diaryl-1,3-thiazolidin-4-ones are reported. Some derivatives proved to be highly effective in inhibiting HIV-1 replication at nanomolar concentrations thereby acting as non-nucleoside HIV-1 RT inhibitors (NNRTIs). SAR studies evidenced that the nature of the substituents at the 2 and 3 positions of(More)
We describe the use of pharmacophore modeling as an efficient tool in the discovery of novel HIV-1 integrase (IN) inhibitors. A three-dimensional hypothetical model for the binding of diketo acid analogues to the enzyme was built by means of the Catalyst program. Using these models as a query for virtual screening, we found several compounds that contain(More)
Several 1,3-thiazolidin-4-ones bearing a 2,6-dihalophenyl group at C-2 and a substituted pyrimidin-2-yl ring at the N-3 were synthesised and evaluated as anti-HIV agents. The results of the in vitro tests showed that some of them were highly effective inhibitors of human immunodeficiency virus type-1 (HIV-1) replication at 10-40 nM concentrations with(More)
This paper reports our work in the field of nonnucleoside RT inhibitors (NNRTIs). On the basis of extensive studies on 1H,3H-thiazolo[3,4-a]benzimidazole derivatives (TBZs) followed by structure-activity relationship (SAR) considerations and molecular modeling, the design and synthesis of a series of 2,3-diaryl-1,3-thiazolidin-4-ones have been performed.(More)
Starting from 1H,3H-thiazolo[3,4-a]benzimidazoles (TBZs), we performed the design, synthesis, and the structure-activity relationship studies of a series of 2,3-diaryl-1,3-thiazolidin-4-ones. Some derivatives proved to be highly effective in inhibiting HIV-1 replication at nanomolar concentrations with minimal cytotoxicity, thereby acting as nonnucleoside(More)
A three-dimensional common feature pharmacophore model was developed using the X-ray structure of RT/non-nucleoside inhibitor (NNRTI) complexes. Starting from the pharmacophore hypothesis and the structure of the lead compound TBZ, new NNRTIs were designed and synthesized, having the benzimidazol-2-one system as a scaffold. Docking experiments showed that(More)
Using a known human immunodeficiency virus type 1 (HIV-1) non-nucleoside reverse transcriptase inhibitor (NNRTI), 1-(2,6-difluorophenyl)-1H,3H-thiazolo[3,4-a]benzimidazole (TBZ NSC 625487) as the lead structure for drug design, a series of novel 1H,3H-thiazolo[3,4-a]benzimidazole derivatives substituted on the benzene-fused ring was prepared. Their in vitro(More)
A series of 1H,3H-thiazolo[4,3-b]quinazolines (2a-i) were synthesized and evaluated for their in vitro antitumour activity against ca. 60 human tumour cell lines. They exhibited moderate (2c, 2d, 2f and 2g) to strong (2a, 2b, 2e, 2h and 2i) cell-growth inhibition at a concentration of 10(-4) M, but weak activity at lower concentrations. Only(More)
Several 2,3-diaryl-1,3-thiazolidin-4-ones were synthesized and evaluated as anti-HIV agents. The results of the in vitro tests showed that some of them were highly effective inhibitors of HIV-1 replication at 30-50 nM concentrations with minimal cytotoxicity, thereby acting as non-nucleoside HIV-1 reverse transcriptase inhibitors (NNRTIs).