Learn More
Many adverse drug reactions are caused by the cytochrome P450 (CYP) dependent activation of drugs into reactive metabolites. In order to reduce attrition due to metabolism-mediated toxicity and to improve safety of drug candidates, we developed two in vitro cell-based assays by combining an activating system (human CYP3A4) with target cells (HepG2 cells):(More)
Recent studies have demonstrated that a member of the nuclear receptor family, pregnane X receptor (PXR) is a key regulator of the expression of cytochrome P450 3A (CYP3A) in humans and rodents. It is also known that species specificity in the induction of CYP3A by xenobiotics is likely a consequence of differences at the level of PXR activation. Because of(More)
Precision-cut liver slices are described as a valuable tool for in vitro metabolism studies of potential drug candidates. Recently, some papers reported successful cryopreservation conditions for liver slices, facilitating a broader and more efficient use of the tissue (particularly of human origin). The aim of this study is to evaluate the effect of(More)
Xenobiotics, including drugs, can influence cytochrome P450 (CYP) activity by upregulating the transcription of CYP genes. To minimize potential drug interactions, it is important to ascertain whether a compound will be an inducer of CYP enzymes early in the development of new therapeutic agents. In vivo and in vitro studies are reported that demonstrate(More)
The scope of this study was to compare in vitro and in vivo cytochrome P450 (CYP) gene induction in mice, using liver slices as an in vitro model. We have chosen to study mice to be able to better interpret CYP induction during long-term safety studies in this species. Mouse liver slices were incubated with beta-naphthoflavone (betaNF), phenobarbital (PB)(More)
Anticancer agents targeting proliferating cell populations in tumor as well as in normal tissues can lead to a number of side effects including hematotoxicity, a common dose-limiting toxicity associated with oncology drugs. Myelosuppression, regarded as unacceptable for other therapeutic indications, is considered a clinical risk also for new targeted(More)
CD-1 mice are commonly used in oncology metabolism and toxicity to support drug discovery and development and to examine drug metabolism and toxicity properties of new chemical entities. On the other hand, athymic nude mice are the preferred animals to investigate tumor growth inhibition. Therefore, a frequently asked question is: are the metabolic and(More)
Currently, several protein kinase-modulating compounds have received market approval across a range of diverse therapeutic indications. Furthermore, a large number of chemical and biological protein kinase-modulating compounds are undergoing testing at the preclinical and clinical level. Protein kinases are both major pharmacological targets and(More)
Inhibition of adenosine A2A receptors has been shown to elicit a therapeutic response in preclinical animal models of Parkinson's disease (PD). We previously identified the triazolo-9H-purine, ST1535, as a potent A(2A)R antagonist. Studies revealed that ST1535 is extensively hydroxylated at the ω-1 position of the butyl side chain. Here, we describe the(More)