#### Filter Results:

#### Publication Year

2000

2016

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

- PIETRO CAPUTO
- 2008

Consider uniformly elliptic random walk on Z d with independent jump rates across nearest neighbour bonds of the lattice. We show that the infinite volume effective diffusion matrix can be almost surely recovered as the limit of finite volume periodized effective diffusion matrices.

- PIETRO CAPUTO
- 2003

We prove a uniform Poincaré inequality for non–interacting unbounded spin systems with a conservation law, when the single–site potential is a bounded perturbation of a convex function with polynomial growth at infinity. The result is then applied to Ginzburg-Landau processes to show diffusive scaling of the associated spectral gap.

We consider the anisotropic three dimensional XXZ Heisenberg ferromagnet in a cylinder with axis along the 111 direction and boundary conditions that induce ground states describing an interface orthogonal to the cylinder axis. Let L be the linear size of the basis of the cylinder. Because of the breaking of the continuous symmetry around the ^ z axis, the… (More)

Aldous' spectral gap conjecture asserts that on any graph the random walk process and the random transposition (or interchange) process have the same spectral gap. We prove the conjecture using a recursive strategy. The approach is a natural extension of the method already used to prove the validity of the conjecture on trees. The novelty is an idea based… (More)

We prove new inequalities implying exponential decay of relative entropy functionals for a class of Zero–Range processes on the complete graph. We first consider the case of uniformly increasing rates, where we use a discrete version of the Bakry– Emery criterium to prove spectral gap and entropy dissipation estimates, uniformly over the number of particles… (More)

We prove existence of a wetting transition for two types of gradient fields: 1) Continuous SOS models in any dimension and 2) Massless Gaussian model in dimension 2. Combined with a recent result showing the absence of such a transition for Gaussian models above 2 dimensions [5], this shows in particular that absolute-value and quadratic interactions can… (More)

The paper concerns lattice triangulations, i.e., triangulations of the integer points in a polygon in R<sup>2</sup> whose vertices are also integer points. Lattice triangulations have been studied extensively both as geometric objects in their own right and by virtue of applications in algebraic geometry. Our focus is on random triangulations in which a… (More)

- P Caputo, A Faggionato
- 2007

We consider random walks in a random environment which are generalized versions of well-known effective models for Mott variable-range hopping. We study the homogenized diffusion constant of the random walk in the one-dimensional case. We prove various estimates on the low-temperature behavior which confirm and extend previous work by physicists. 1.… (More)

- Charles Bordenave, Pietro Caputo, Djalil Chafäı
- 2008

In this work, we adopt a Random Matrix Theory point of view to study the spectrum of large reversible Markov chains in random environment. As the number of states tends to infinity, we consider both the almost sure global behavior of the spectrum , and the local behavior at the edge including the so called spectral gap. We study presently two simple models.… (More)

We study the Glauber dynamics for the (2+1)d Solid-On-Solid model above a hard wall and below a far away ceiling, on an L × L box of Z 2 with zero boundary conditions, at large inverse-temperature β. It was shown by Bricmont, El-Mellouki and Fröhlich [12] that the floor constraint induces an entropic repulsion effect which lifts the surface to an average… (More)