Learn More
Cerebellar granule cells deprived of depolarizing concentration of extracellular potassium, [K+]o, undergo apoptosis. We here report that this apoptotic process is associated with an immediate and permanent decrease in the levels of free intracellular calcium, [Ca2+]i. Although forskolin and IGF-1 are both able to prevent apoptosis, only forskolin is able(More)
The altered function and/or structure of tau protein is postulated to cause cell death in tauopathies and Alzheimer's disease. However, the mechanisms by which tau induces neuronal death remain unclear. Here we show that overexpression of human tau and of some of its N-terminal fragments in primary neuronal cultures leads to an N-methyl-D-aspartate receptor(More)
To gain insight into the mechanism through which the neurotransmitter glutamate causally participates in several neurological diseases, in vitro cultured cerebellar granule cells were exposed to glutamate and oxygen radical production was investigated. To this aim, a novel procedure was developed to detect oxygen radicals; the fluorescent dye(More)
High levels of extracellular K+ ensure proper development and prolong survival of cerebellar granule neurons in culture. We find that when switched from a culture medium containing high K+ (25 mM) to one containing a low but more physiological K+ concentration (5 mM), differentiated granule neurons degenerate and die. Death induced by low K+ is due to(More)
This article reports the results of a systematic investigation of the different types of antibodies produced in the course of a long-term immunization of rats with mouse nerve growth factor (NGF). We have characterized three types of monoclonal antibodies, namely: (1) antibodies that bind to NGF and inhibit its binding to target cells and its biological(More)
The excitatory neurotransmitter glutamate plays a major role in determining certain neurological disorders. This situation, referred to as 'glutamate neurotoxicity' (GNT), is characterized by an increasing damage of cell components, including mitochondria, leading to cell death. In the death process, reactive oxygen species (ROS) are generated. The present(More)
Cerebellar granule cells undergo apoptosis in culture after deprivation of potassium and serum. During this process we found that tau, a neuronal microtubule-associated protein that plays a key role in the maintenance of neuronal architecture, and the pathology of which correlates with intellectual decline in Alzheimer's disease, is cleaved. The final(More)
Although the role of the microtubule-binding domain of the tau protein in the modulation of microtubule assembly is widely established, other possible functions of this protein have been poorly investigated. We have analyzed the effect of adenovirally mediated expression of two fragments of the N-terminal portion - free of microtubule-binding domain - of(More)
We investigated the potential role of the ubiquitin proteolytic system in the death of cerebellar granule neurons induced by reduction of extracellular potassium. Inhibitors of proteasomal function block apoptosis if administered at onset of this process, but they do not exert such effect when added 2-3 hr later. The same inhibitors also prevent caspase-3(More)
Alzheimer's disease (AD) is characterized by Aβ overproduction and tau hyperphosphorylation. We report that an early, transient and site-specific AD-like tau hyperphosphorylation at Ser262 and Thr231 epitopes is temporally and causally related with an activation of the endogenous amyloidogenic pathway that we previously reported in hippocampal neurons(More)