Learn More
The cDNA encoding Pfmap-2, an enzyme of the human malaria parasite Plasmodium falciparum, was cloned, sequenced, and expressed in Escherichia coli. The open reading frame carried by the Pfmap-2 cDNA encodes a 508-amino acid polypeptide of 59.2 kDa with maximal homology to mitogen-activated protein kinases (MAPKs) from various organisms. The purified(More)
We have cloned Pfnek-1, a gene encoding a novel protein kinase from the human malaria parasite Plasmodium falciparum. This enzyme displays maximal homology to the never-in-mitosis/Aspergillus (NIMA)/NIMA-like kinase (Nek) family of protein kinases, whose members are involved in eukaryotic cell division processes. Similar to other P. falciparum protein(More)
Blood-stage malaria parasites in the vertebrate host can develop either into the asexual, multiplying forms, called schizonts, or into gametocytes, the sexual stages of the parasite. In the present work we studied the differentiation into asexual parasites or gametocytes of the progeny of single, isolated schizonts of the clone 3D7A of Plasmodium(More)
Commitment to the production of female and male gametocytes was studied in the NF54 line of the human malaria parasite Plasmodium falciparum. The development of sibling parasites derived from individual schizonts was followed, and 2 antisera against the female gametocyte-specific protein Pfg377 and the male gametocyte-specific protein alpha-tubulin II were(More)
The molecular mechanisms regulating cell proliferation and development during the life cycle of malaria parasites remain to be elucidated. The peculiarities of the cell cycle organization during Plasmodium falciparum schizogony suggest that the modalities of cell cycle control in this organism may differ from those in other eukaryotes. Indeed, existing data(More)
Malaria parasites invade erythrocytes of their host both for asexual multiplication and for differentiation to male and female gametocytes - the precursor cells of Plasmodium gametes. For further development the parasite is dependent on efficient release of the asexual daughter cells and of the gametes from the host erythrocyte. How malarial parasites exit(More)
A stage-specific protein has been identified in gametocytes of Plasmodium falciparum. The protein is represented on two-dimensional electrophoresis by peptides of two apparent Mr of 27,000 and 25,000, each of which has at least four different isoelectric points between pH 6.0 and 5.0. The protein is designated Pfg 27/25 (P. falciparum gametocyte-specific(More)
Malaria symptoms occur during Plasmodium falciparum development into red blood cells. During this process, the parasites make substantial modifications to the host cell in order to facilitate nutrient uptake and aid in parasite metabolism. One significant alteration that is required for parasite development is the establishment of an anion channel, as part(More)
Despite over a century of study of malaria parasites, parts of the Plasmodium falciparum life cycle remain virtually unknown. One of these is the early gametocyte stage, a round shaped cell morphologically similar to an asexual trophozoite in which major cellular transformations ensure subsequent development of the elongated gametocyte. We developed a(More)