Learn More
Extracellular vesicles (EVs), such as exosomes and microvesicles, are released by different cell types and participate in physiological and pathophysiological processes. EVs mediate intercellular communication as cell-derived extracellular signalling organelles that transmit specific information from their cell of origin to their target cells. As a result(More)
Cell-derived membrane vesicles (CMVs) are endogenous carriers transporting proteins and nucleic acids between cells. They appear to play an important role in many disease processes, most notably inflammation and cancer, where their efficient functional delivery of biological cargo seems to contribute to the disease progress. CMVs encompass a variety of(More)
Extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, are released by almost all cell types, including tumour cells. Through transfer of their molecular contents, EVs are capable of altering the function of recipient cells. Increasing evidence suggests a key role for EV mediated intercellular communication in a variety of(More)
The identification of extracellular phospholipid vesicles as conveyors of cellular information has created excitement in the field of drug delivery. Biological therapeutics, including short interfering RNA and recombinant proteins, are prone to degradation, have limited ability to cross biological membranes, and may elicit immune responses. Therefore,(More)
Efficient intracellular delivery of siRNA is a significant hurdle to its therapeutic success. For biological studies on the efficiency of carrier-mediated uptake of siRNA, quantitative determination of the amount of internalized siRNA is required. In this study, when the apparent uptake of fluorescently labeled siRNA, formulated in different lipo- and(More)
Extracellular microRNAs (miRNAs) are promising biomarkers of the inherited muscle wasting condition Duchenne muscular dystrophy, as they allow non-invasive monitoring of either disease progression or response to therapy. In this study, serum miRNA profiling reveals a distinct extracellular miRNA signature in dystrophin-deficient mdx mice, which shows(More)
BACKGROUND The healthy vascular endothelium, which forms the barrier between blood and the surrounding tissues, is known to efficiently respond to stress signals like hypoxia and inflammation by adaptation of cellular physiology and the secretion of (soluble) growth factors and cytokines. Exosomes are potent mediators of intercellular communication. Their(More)
Cells release nano-sized membrane vesicles that are involved in intercellular communication by transferring biological information between cells. It is generally accepted that cells release at least three types of extracellular vesicles (EVs): apoptotic bodies, microvesicles and exosomes. While a wide range of putative biological functions have been(More)
Use of RNA interference as novel therapeutic strategy is hampered by inefficient delivery of its mediator, siRNA, to target cells. Cationic polymers have been thoroughly investigated for this purpose but often display unfavorable characteristics for systemic administration, such as interactions with serum and/or toxicity. We report the synthesis of a new(More)
Extracellular vesicles (EVs) are specialised endogenous carriers of proteins and nucleic acids and are involved in intercellular communication. EVs are therefore proposed as candidate drug delivery systems for the delivery of nucleic acids and other macromolecules. However, the preparation of EV-based drug delivery systems is hampered by the lack of(More)