Pierre Sokoloff

Learn More
A dopamine receptor has been characterized which differs in its pharmacology and signalling system from the D1 or D2 receptor and represents both an autoreceptor and a postsynaptic receptor. The D3 receptor is localized to limbic areas of the brain, which are associated with cognitive, emotional and endocrine functions. It seems to mediate some of the(More)
Environmental stimuli that are reliably associated with the effects of many abused drugs, especially stimulants such as cocaine, can produce craving and relapse in abstinent human substance abusers. In animals, such cues can induce and maintain drug-seeking behaviour and also reinstate drug-seeking after extinction. Reducing the motivational effects of(More)
In monkeys rendered parkinsonian with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), expression of the dopamine D3 receptor was decreased. However, levodopa-induced dyskinesia (LID), similar to the debilitating and pharmacoresistant involuntary movements elicited after long-term treatment with levodopa in patients with Parkinson disease (PD), was(More)
Brain-derived neurotrophic factor (BDNF), like other neurotrophins, is a polypeptidic factor initially regarded to be responsible for neuron proliferation, differentiation and survival, through its uptake at nerve terminals and retrograde transport to the cell body. A more diverse role for BDNF has emerged progressively from observations showing that it is(More)
In rats with unilateral lesions of the nigrostriatal dopamine pathway with 6-hydroxydopamine, the motor stimulating effects of levodopa, an indirect dopamine receptor agonist, evidenced by contraversive rotations, become enhanced upon repeated intermittent administration. However, the mechanisms of this behavioral sensitization are essentially unknown. We(More)
We have identified 7-[3H]hydroxy-N,N-di-n-propyl-2-aminotetralin ([3H]7-OH-DPAT) as a selective probe for the recently cloned dopamine D3 receptor and used it to assess the presence of this receptor and establish its distribution and properties in brain. In transfected Chinese hamster ovary (CHO) cells, it binds to D3 receptors with subnanomolar affinity,(More)
A polyclonal antibody was generated using synthetic peptides designed in a specific sequence of the rat D(3) receptor (D(3)R). Using transfected cells expressing recombinant D(3)R, but not D(2) receptor, this antibody labeled 45-80 kDa species in Western blot analysis, immunoprecipitated a soluble fraction of [(125)I]iodosulpride binding, and generated(More)
The role of the D(3) receptor has remained largely elusive before the development of selective research tools, such as selective radioligands, antibodies, various highly specific pharmacological agents and knock-out mice. The data collected so far with these tools have removed some of the uncertainties regarding the functions mediated by the D(3) receptor.(More)
We have established the cellular distribution of the dopamine D3 receptor using tritiated 7-hydroxy-N-N-di-n-propyl-2-aminotetralin and a complementary RNA probe to visualize autoradiographically the protein in binding studies and the gene transcripts by in situ hybridization, respectively. Studies with these two markers confirm the restricted expression of(More)
The messenger RNA (mRNA) of the recently characterized D3 dopamine receptor was visualized on rat brain sections using in situ hybridization with a 32P-labeled ribonucleic acid probe corresponding to a major part of the third cytoplasmic loop, a domain in which D2 and D3 dopamine receptors display little homology. For the purpose of comparison, D2 receptor(More)