Learn More
In addition to its role in controlling cell cycle progression, the tumor suppressor protein p53 can also affect other cellular functions such as cell migration. In this study, we show that p53 deficiency in mouse embryonic fibroblasts cultured in three-dimensional matrices induces a switch from an elongated spindle morphology to a markedly spherical and(More)
Rho GTPases are key regulators of tumour cell invasion and therefore constitute attractive targets for the design of anticancer agents. Several strategies have been developed to modulate their increased activities during cancer progression. Interestingly, none of these approaches took into account the existence of the well-known antagonistic relationship(More)
We describe an algebra of Edge-Valued Decision Diagrams (EVMDDs) to encode arithmetic functions and its implementation in a model checking library. We provide efficient algorithms for manipulating EVMDDs and review the theoretical time complexity of these algorithms for all basic arithmetic and relational operators. We also demonstrate that the time(More)
The tumour suppressor functions of p53 that are important for its activity depend on its role as a cell cycle arrest mediator and apoptosis inducer. Here we identify a novel function for p53 in regulating cell morphology and movement. We investigated the overall effect of p53 on morphological changes induced by RhoA, Rac1 and Cdc42 GTPases in mouse(More)
Much remains to be learned about how cancer cells acquire the property of migration, a prerequisite for invasiveness and metastasis. Loss of p53 functions is assumed to be a crucial step in the development of many types of cancers, leading to dysregulation of cell cycle checkpoint controls and apoptosis. However, emerging evidence shows that the(More)
BACKGROUND Ras-mediated transformation of mammalian cells has been shown to activate multiple signalling pathways, including those involving mitogen-activated protein kinases and the small GTPase Rho. Members of the Rho family affect cell morphology by controlling the formation of actin-dependent structures: specifically, filopodia are induced by Cdc42Hs,(More)
Movement of individual cells and of cellular cohorts, chains or sheets requires physical forces that are established through interactions of cells with their environment. In vivo, migration occurs extensively during embryonic development and in adults during wound healing and tumorigenesis. In order to identify the molecular events involved in cell(More)
Reprogramming somatic cells into induced pluripotent stem cells (iPSCs) has provided huge insight into the pathways, mechanisms and transcription factors that control differentiation. Here we use high-throughput RT-PCR technology to take a snapshot of splicing changes in the full spectrum of high- and low-expressed genes during induction of fibroblasts,(More)
Embedded system control often relies on linear systems, which admit quadratic invariants. The parts of the code that host linear system implementations need dedicated analysis tools, since intervals or linear abstract domains will give imprecise results, if any at all, on these systems. Previous work by FERET proposes a specific abstraction for digital(More)
—Many Wireless Sensor Networks (WSN) applications success is contingent upon the reliable delivery of high-priority events from many scattered sensors to one or more sink nodes. In particular, WSN has to be self-adaptive and resilient to errors by providing efficient mechanisms for information distribution especially in the multi-hop scenario. To meet the(More)