Learn More
Persistent changes in synaptic strength are locally regulated by both protein degradation and synthesis; however, the coordination of these opposing limbs is poorly understood. Here, we found that the RISC protein MOV10 was present at synapses and was rapidly degraded by the proteasome in an NMDA-receptor-mediated activity-dependent manner. We designed a(More)
We measured the expression of 187 miRNAs using quantitative real time PCR in the hippocampal CA1 region of contextually conditioned mice and cultured embryonic rat hippocampal neurons after neuronal stimulation with either NMDA or bicuculline. Many of the changes in miRNA expression after these three types of stimulation were similar. Surprisingly, the(More)
The biphasic life cycle with pelagic larva and benthic adult stages is widely observed in the animal kingdom, including the Porifera (sponges), which are the earliest branching metazoans. The demosponge, Amphimedon queenslandica, undergoes metamorphosis from a free-swimming larva into a sessile adult that bears no morphological resemblance to other animals.(More)
MicroRNAs are a class of small RNA regulators that are involved in numerous cellular processes, including development, proliferation, differentiation, and plasticity. The emerging concept is that microRNAs play a central role in controlling the balance between stem cell self-renewal and fate determination by regulating the expression of stem cell(More)
Control of cell proliferation is a fundamental aspect of tissue physiology central to morphogenesis, wound healing, and cancer. Although many of the molecular genetic factors are now known, the system level regulation of growth is still poorly understood. A simple form of inhibition of cell proliferation is encountered in vitro in normally differentiating(More)
Tau inclusions are a prominent feature of many neurodegenerative diseases including Alzheimer's disease. Their accumulation in neurons as ubiquitinated filaments suggests a failure in the degradation limb of the Tau pathway. The components of a Tau protein triage system consisting of CHIP/Hsp70 and other chaperones have begun to emerge. However, the site of(More)
  • Min Jeong Kye, Emily D Niederst, Mary H Wertz, Inês do Carmo G Gonçalves, Bikem Akten, Katarzyna Z Dover +9 others
  • 2014
Reduced expression of SMN protein causes spinal muscular atrophy (SMA), a neurodegenerative disorder leading to motor neuron dysfunction and loss. However, the molecular mechanisms by which SMN regulates neuronal dysfunction are not fully understood. Here, we report that reduced SMN protein level alters miRNA expression and distribution in neurons. In(More)
The multifactorial nature of disease motivates the use of systems-level analyses to understand their pathology. We used a systems biology approach to study tau aggregation, one of the hallmark features of Alzheimer's disease. A mathematical model was constructed to capture the current state of knowledge concerning tau's behavior and interactions in cells.(More)
The use of the semiconductor quantum dots (QD) as biolabels for both ensemble and single-molecule tracking requires the development of simple and versatile methods to target individual proteins in a controlled manner, ideally in living cells. To address this challenge, we have prepared small and stable QDs (QD-ND) using a surface coating based on a peptide(More)
  • Lauren Lebon, Michelle Fontes, Tara Orr, Jonathan Young, Joe Levine, Fred Tan +33 others
  • 2014
Acknowledgments I must start with thanking my advisor, Michael Elowitz. His sheer enthusiasm and uncanny knack for finding cool scientific questions have made life in the Labowitz a constant adventure. Michael gives his team the freedom to follow whatever ideas we find exciting. He then teaches us the skills and gives us the opportunities to convey our(More)
  • 1