Pierre N. E. de Graan

Learn More
The growth-associated protein B-50 (GAP-43) is a presynaptic protein. Its expression is largely restricted to the nervous system. B-50 is frequently used as a marker for sprouting, because it is located in growth cones, maximally expressed during nervous system development and re-induced in injured and regenerating neural tissues. The B-50 gene is highly(More)
In patients suffering from temporal lobe epilepsy (TLE), increased extracellular glutamate levels in the epileptogenic hippocampus both during and after clinical seizures have been reported. These increased glutamate levels could be the result of malfunctioning and/or downregulation of glutamate transporters (also known as EAATs; excitatory amino acid(More)
Mesial temporal lobe epilepsy (mTLE) is a chronic neurological disorder characterized by recurrent seizures. The pathogenic mechanisms underlying mTLE may involve defects in the post-transcriptional regulation of gene expression. MicroRNAs (miRNAs) are non-coding RNAs that control the expression of genes at the post-transcriptional level. Here, we performed(More)
Within the hippocampal formation, two forms of long-lasting synaptic plasticity, long-term potentiation (LTP) and long-term depression (LTD), can be induced which require the activation of NMDA receptors. Interestingly, it has been shown that both LTP and LTD are reduced in adult animals. Recently, a new chemical protocol has been described which elicits(More)
Hippocampal sclerosis (HS) is a common derangement in many patients with temporal lobe epilepsy. As a result of neuronal cell loss in the hilar region of the hippocampus, it is proposed that mossy fibres sprout and re-innervate new regions of the dentate gyrus. This sprouting may cause recurrent excitation that may lead to the generation of seizures. Here,(More)
Glial fibrillary acidic protein (GFAP) is considered to be a highly specific marker for glia. Here, we report on the expression of GFAP in neurons in the human hippocampus. Intriguingly, this neuronal GFAP is coded by out-of-frame splice variants and its expression is associated with Alzheimer pathology. We identified three novel GFAP splice forms: Delta(More)
1. Long-term potentiation and its counterpart long-term depression are two forms of activity dependent synaptic plasticity, in which protein kinases and protein phosphatases are essential. 2. B-50/GAP-43 and RC3/neurogranin are two defined neuronal PKC substrates with different synaptic localization. B-50/GAP-43 is a presynaptic protein and RC3/neurogranin(More)
Recent studies have demonstrated that phorbol diesters enhance the release of various neurotransmitters. It is generally accepted that activation of protein kinase C (PKC) is the mechanism by which phorbol diesters act on neurotransmitter release. The action of PKC in neurotransmitter release is very likely mediated by phosphorylation of substrate proteins(More)
Protein kinase C (PKC) is believed to have a crucial role in synaptic transmitter release and long-term potentiation. An important substrate of PKC in the brain is the neuron-specific presynaptically localized protein B-50 (also termed GAP-43, F1, pp46 or P-57). B-50 has been implicated in the regulation of polyphosphoinositide metabolism and calmodulin(More)
Mesial temporal lobe epilepsy (mTLE) is a chronic and often treatment-refractory brain disorder characterized by recurrent seizures originating from the hippocampus. The pathogenic mechanisms underlying mTLE remain largely unknown. Recent clinical and experimental evidence supports a role of various inflammatory mediators in mTLE. Here, we performed protein(More)