Pierre Lothe

  • Citations Per Year
Learn More
In the past few years, lots of works were achieved on Simultaneous Localization and Mapping (SLAM). It is now possible to follow in real time the trajectory of a moving camera in an unknown environment. However, current SLAM methods are still prone to drift errors, which prevent their use in large-scale applications. In this paper, we propose a solution to(More)
In this system paper, we propose a real-time car localisation process in dense urban areas by using a single perspective camera and a priori on the environment. To tackle this problem, it is necessary to solve two well-known monocular SLAM limitations: scale factor drift and error accumulation. The proposed idea is to combine a monocular SLAM process based(More)
This paper addresses the challenging issue of vision-based localization in urban context. It briefly describes our contributions in large environments modeling and accurate camera localization. The efficiency of the resulting system is illustrated through Augmented Reality results on large trajectory of several hundred meters.
Monocular SLAM reconstruction algorithm advancements enable their integration in various applications: trajectometry, 3D model reconstruction, etc. However proposed methods still have drift limitations when applied to large-scale sequences. In this paper, we propose a post-processing algorithm which exploits a CAD model to correct SLAM reconstructions. The(More)
We propose a post processing algorithm that drastically reduces drift errors of SLAM methods. Our solution exploits a coarse 3D city model, for example from GIS database. First, we propose an original articulated transformation model in order to roughly align the SLAM reconstruction with this 3D model through a non-rigid ICP step. Then, to refine the(More)
  • 1