Pierre-Jean Alet

  • Citations Per Year
Learn More
We here propose an all-in situ method for growing vapor-liquid-solid (VLS) silicon nanowires (SiNWs) directly on SnO(2) substrates in a plasma-enhanced chemical vapor deposition system. The tin catalysts are formed by a well-controlled H(2) plasma treatment of the SnO(2) layer. The lowest temperature for the tin-catalyzed VLS SiNWs growth in a silane plasma(More)
Smart grids offer an indisputable business opportunity for system operators and energy traders to engage in demand response programs. Hereby these actors may profit from trading flexibility provided at the prosumer side on the energy markets. This paper discusses the system design challenges for an information and communication technology system(More)
Plasma-enhanced low temperature growth (<300 degrees C) of silicon nanowires (SiNWs) and hierarchical structures via a vapor-liquid-solid (VLS) mechanism are investigated. The SiNWs were grown using tin and indium as catalysts prepared by in situ H(2) plasma reduction of SnO(2) and ITO substrates, respectively. Effective growth of SiNWs at temperatures as(More)
We report an in-plane solid-liquid-solid (IPSLS) mode for obtaining self-avoiding lateral silicon nanowires (SiNW) in a reacting-gas-free annealing process, where the growth of SiNWs is guided by liquid indium drops that transform the surrounding a-SiratioH matrix into crystalline SiNWs. The SiNWs can be approximately mm long, with the smallest diameter(More)
  • 1