Learn More
Underwater acoustic imaging is traditionally performed with beamforming: beams are formed at emission to insonify limited angular regions; beams are (synthetically) formed at reception to form the image. We propose to exploit a natural sparsity prior to perform 3D underwater imaging using a newly built flexible-configuration sonar device. The computational(More)
A method to calibrate the elements of large arrays devoted to underwater applications is presented. The goal is to measure the sensitivity and directivity of the elements over their full bandwidth. The main constraint comes from the bounded geometry of the experimental setups that limits the duration of the time windows available for analyzing the received(More)
  • 1