Pierre-André Farine

Learn More
A platform for high spatial and temporal resolution electrophysiological recordings of in vitro electrogenic cell cultures handling 4096 electrodes at a full frame rate of 8 kHz is presented and validated by means of cardiomyocyte cultures. Based on an active pixel sensor device implementing an array of metallic electrodes, the system provides acquisitions(More)
In this paper we introduce a low complexity and accurate technique for target image search and retrieval. This method, which operates directly in the compressed JPEG domain, addresses two of the CBIR challenges stated by The Benchathlon Network regarding the search of a specific image: finding out if an exact same image exists in a database, and identifying(More)
 Abstract—The acquisition of Global Navigation Satellite Systems signals using Code Division Multiple Access can be performed through classical correlation or using a Fourier transform. These methods are well known but what is missing is a comparison of their performance for a given hardware area or target. This paper presents this comparison for(More)
In this paper we present an efficient method for Content Based Image Retrieval (CBIR) of occluded images using DCT-phase. The proposed method utilizes a novel correlation metric for ternary-valued DCT-phase, as well as a region merging method to reconstruct the non-occluded regions in the retrieved image. The proposed image retrieval method showed good(More)
In this paper we propose a low complexity method for Rotation, Scale and Translation (RST) invariant content-based image retrieval, suitable for a handheld image recognition device. The RST compensation method is based on Fourier-Mellin Transform (FMT) which we implement efficiently using log-polar grid interpolation. This RST compensation method is used in(More)
In [1] Contreras-Vidal and colleagues have shown the feasibility of inferring the linear and angular kinematics of treadmill walking from scalp EEG. Here, we apply a discrete approach to the same problem of decoding the human gait. By reducing the gait process to a mere succession of Stance and Swing phases for each foot, the average decoding accuracy(More)
The use of global navigation satellite system receivers for navigation still presents many challenges in urban canyon and indoor environments, where satellite availability is typically reduced and received signals are attenuated. To improve the navigation performance in such environments, several enhancement methods can be implemented. For instance,(More)
In this work we present an instrumented smart knee prosthesis for in-vivo measurement of forces and kinematics. Studying the constraints, we designed minimal sensory systems to be placed in the polyethylene part of the prosthesis. The magnetic sensors and a permanent magnet are chosen and configured to measure the relative kinematics of the prosthesis.(More)
In this work, we present the general concept of an instrumented smart knee prosthesis for in-vivo measurement of forces and kinematics. This system can be used for early monitoring of the patient after implantation and prevent possible damage to the prosthesis. The diagnosis of defects can be done by detecting the load imbalance or abnormal forces and(More)