Piero Torelli

  • Citations Per Year
Learn More
Bulk and surface sensitive x-ray spectroscopic techniques are applied in tandem to show that the valence band edge for In2O3 is found significantly closer to the bottom of the conduction band than expected on the basis of the widely quoted bulk band gap of 3.75 eV. First-principles theory shows that the upper valence bands of In2O3 exhibit a small(More)
Spin-based electronics in topological insulators (TIs) is favored by the long spin coherence(1,2) and consequently fault-tolerant information storage. Magnetically doped TIs are ferromagnetic up to 13 K,(3) well below any practical operating condition. Here we demonstrate that the long-range ferromagnetism at ambient temperature can be induced in(More)
these spatial limits of the solid state. Presently, one of the most fl ourishing research fi elds and at the same time one of the major challenges faced by contemporary solid state science and technology has been in designing, understanding, and controlling the properties of engineered nanostructures and functional nanomaterials (e.g., oxides). [ 1 ] The(More)
We investigated the magnetic anisotropy energy of monatomic surface-step atoms in antiferromagnetic/ferromagnetic (AF/FM) epitaxial Mn/Co bilayers grown on vicinal Cu(001) surfaces. The step-induced anisotropy of the Co/Cu(001) films was quenched upon submonolayer Mn deposition, but a reentrant uniaxial surface anisotropy was observed for Mn thickness (tMn)(More)
We report high-resolution hard x-ray photoemission spectroscopy results on (Ga,Mn)As films as a function of Mn doping. Supported by theoretical calculations we identify, for both low (1%) and high (13%) Mn doping values, the electronic character of the states near the top of the valence band. Magnetization and temperature-dependent core-level photoemission(More)
Cobalt nano-structured ultrathin films were grown on orthorhombic MnF(2) by molecular beam epitaxy on CaF(2) epitaxial layers deposited on Si(111) substrates. The Co film was grown at room temperature. It was found to be polycrystalline, forming nano-islands with height≈diameter≤10 nm. X-ray absorption evidences the chemical stability of the Co/MnF(2)(More)
We investigated the structural, magnetic, and electronic properties of Bi2Se3 epilayers containing Fe grown on GaAs(111) by molecular beam epitaxy. It is shown that, in the window of growth parameters leading to Bi2Se3 epilayers with optimized quality, Fe atom clustering leads to the formation of FexSey inclusions. These objects have platelet shape and are(More)
Spin-crossover metal complexes are highly promising magnetic molecular switches for prospective molecule-based devices. The spin-crossover molecular photoswitches developed so far operate either at very low temperatures or in the liquid phase, which hinders practical applications. Herein, we present a molecular spin-crossover iron(II) complex that can be(More)
ULTRASPIN is an apparatus devoted to the measurement of the spin polarization (SP) of electrons ejected from solid surfaces in a UHV environment. It is designed to exploit ultrafast light sources (free electron laser or laser high harmonic generation) and to perform (photo)electron spin analysis by an arrangement of Mott scattering polarimeters that measure(More)
Interfaces between organic semiconductors and ferromagnetic metals offer intriguing opportunities in the rapidly developing field of organic spintronics. Understanding and controlling the spin-polarized electronic states at the interface is the key toward a reliable exploitation of this kind of systems. Here we propose an approach consisting in the(More)