Piero G. Pavan

Learn More
A constitutive model is proposed to describe the mechanical behavior of the plantar fascia. The mechanical characterization of the plantar fascia regards the role in the foot biomechanics and it is involved in many alterations of its functional behavior, both of mechanical and nonmechanical origin. The structural conformation of the plantar fascia in its(More)
The analysis of interaction phenomena occurring between the plantar region of the foot and insole was investigated using a combined experimental-numerical approach. Experimental data on the plantar pressure for treadmill walking of a subject were obtained using the Pedar(®) system. The plantar pressure resultant was monitored during walking and adopted to(More)
Numerical models represent a powerful tool for investigating the biomechanical behavior of articular cartilages, in particular in the case of complex conformation of anatomical site. In the literature, there are complex non-linear-multiphase models for investigating the mechanical response of articular cartilages, but seldom implemented for the analysis of(More)
The biomechanical efficiency of oral implants is deeply influenced by mechanical properties of cortical and trabecular bone in the jaw and, in particular, in the peri-implant region. When the mechanical response of the implant-bone system is analysed by means of numerical models, the effective mechanical properties of bone and the possible change as a(More)
Engineered skeletal muscle tissues have been proposed as potential solutions for volumetric muscle losses, and biologic scaffolds have been obtained by decellularization of animal skeletal muscles. The aim of the present work was to analyse the characteristics of a biologic scaffold obtained by decellularization of human skeletal muscles (also through(More)
A non-linear visco-elastic constitutive model is adopted to describe the relaxation phenomena of the periodontal ligament (PDL). The introduction of a non-linear formulation of visco-elasticity is necessary because experimental data from the literature referring to animal models show that the relaxation rate depends on the level of strain applied. In(More)
The focus of this work is the numerical modeling of the anterior compartment of the human leg with particular attention to crural fascia. Interaction phenomena between fascia and muscles are of clinical interest to explain some pathologies, as the compartment syndrome. A first step to enhance knowledge on this topic consists in the investigation of fascia(More)
This article is distributed under the terms of the Creative Commons AttributionNoncommercial License (CC BY-­‐NC 4.0) which permits any noncommercial use,distribution, and reproduction in any medium, provided the original author(s) and source are credited.. Physical exercise is known to have beneficial effects on muscle trophism and force production(More)
Valid and reliable accessible measures of balance are required in a health-related fitness test battery, both in the general population and in groups with special needs. For this purpose, the capability of the Wii Balance Board (WBB) in evaluating standing balance was analysed and compared with a laboratory-graded force platform (FP). A 30-s double limb(More)
The present work focuses on the numerical modeling of the mechanical behavior of the crural fascia, the deep fascia enwrapping the lower limb muscles. This fascia has an important biomechanical role, due to its interaction with muscles during contraction and its association with pathological events, such as compartment syndrome. The mechanical response of(More)