Learn More
OBJECTIVE The aim of the present work is the analysis of mobility of human dentition under the action of physiological short-term loading by using a numerical approach. The mobility of tooth is mainly attributed to the deformation of the periodontal ligament, hence particular attention is focused on the definition of a suitable constitutive model for this(More)
OBJECTIVES The purpose of the present work is to investigate the interaction phenomena occurring between endosseus dental implants and peri-implant bone tissue. MATERIAL AND METHODS Detailed finite element models are adopted in order to analyze the actual behavior of bone-implant system depending on implant and anatomical site configuration and loading(More)
OBJECTIVES The objective of the present work was to use numerical analysis to evaluate the relevance of stress states induced in peri-implant bone tissue by a misfit in a dental fixed prosthesis. Misfits in both mesial-distal and lingual-labial directions were considered to investigate a realistic configuration of the problem. MATERIALS AND METHODS A(More)
An investigation is carried out on the effects induced in bone tissue surrounding oral implants placed in the premolar region of a mandible by using a numerical approach. In particular, a single implant and a multiple implant frame under loading are considered. The effects of accuracy in the coupling of the connecting bar and implants are evaluated. The(More)
A viscoelastic constitutive model for the periodontal ligament (PDL) capable of accounting for large strains, anisotropy, and inelastic time-dependent effects was developed. Anisotropy characteristics are determined by the composite nature of the tissue and, in particular, by the distribution of collagen fibres. Time-dependent viscous phenomena are due to(More)
Ten dissections of inferior limbs and histological studies were performed to describe the structural conformation of the muscular fascia of the leg (crural fascia) and to propose a constitutive model to be adopted for the analysis of its biomechanical behaviour. The crural fascia had a mean thickness of 924 μm and was composed of three layers (mean(More)
Engineered skeletal muscle tissues have been proposed as potential solutions for volumetric muscle losses, and biologic scaffolds have been obtained by decellularization of animal skeletal muscles. The aim of the present work was to analyse the characteristics of a biologic scaffold obtained by decellularization of human skeletal muscles (also through(More)
The aim of this work is to investigate the instantaneous mechanical response of tendons by the use of an anisotropic elasto-damage constitutive model. This study addresses the analysis of the mechanical behaviour of healthy tendons during physiological loading and to degeneration phenomena. These are correlated with aging or traumatic events such as chronic(More)
A visco-elasto-plastic constitutive model is formulated for investigating the mechanics of cortical bone tissue, accounting for an anisotropic configuration and post-elastic and time-dependent phenomena. The constitutive model is developed with reference to experimental data obtained from literature on the behaviour of cortical bone taken from multiple(More)
A constitutive model is proposed to describe the mechanical behavior of the plantar fascia. The mechanical characterization of the plantar fascia regards the role in the foot biomechanics and it is involved in many alterations of its functional behavior, both of mechanical and nonmechanical origin. The structural conformation of the plantar fascia in its(More)