Learn More
Peripheral nerves are complex organs that can be found throughout the body reaching almost all tissues and organs to provide motor and/or sensory innervation. A parenchyma (the noble component made by the nerve fibers, i.e., axons and Schwann cells) and a stroma (the scaffold made of various connective elements) can be recognized. Although morphological(More)
Size estimation of myelinated nerve fibers in peripheral nerves is a very common task in neuromorphology and different dedicated morpho-quantitative procedures have been devised and used to date. Unfortunately, many reports on experimental nerve studies lack comprehensive information on the procedures that have been designed and applied for myelinated fiber(More)
Diffusible factors from the distal stumps of transected peripheral nerves exert a neurotropic effect on regenerating nerves in vivo (specificity). This morphological study was designed to investigate the existence of tissue specificity in peripheral nerve fiber regeneration through a graft of vein filled with fresh skeletal muscle. This tubulization(More)
Oxidative stress is considered to be one of the main causes of neural damage after injury. However, little is known about the changes in mRNA expression of antioxidant molecules that occur after injury and regeneration of the peripheral nerve. In the present study, the rat median nerve was transected, and transcriptional changes were studied at day 6 and(More)
Although the most significant advances in nerve repair and regeneration have been acquired over the last few decades, the study of nerve repair and regeneration potential dates back to ancient times namely to Galen in the second century A.D. This brief historical note outlines the milestones which have guided us to our present knowledge. In particular, we(More)
Schwann cells play a critical role in peripheral nerve regeneration. When a non-nervous conduit is used to bridge a nerve defect, the conduit is soon colonized by a number of Schwann cells that make a pathway for regrowing axons. By using electron microscopy, immunohistochemistry, and reverse transcriptase-polymerase chain reaction analysis, we have(More)
This paper addresses several basic issues that are important for the experimental model design to investigate peripheral nerve regeneration. First, the importance of carrying out adequate preliminary in vitro investigation is emphasized in light of the ethical issues and with particular emphasis on the concept of the Three Rs (Replacement, Reduction, and(More)
Experimental investigation of peripheral nerve fiber regeneration is attracting more and more attention among both basic and clinical researchers. Assessment of myelinated nerve fiber morphology is a pillar of peripheral nerve regeneration research. The gold standard for light microscopic imaging of myelinated nerve fibers is toluidine blue staining of(More)
Multiple nerve repair by means of a Y-shaped nerve guide represents a good model for studying the specificity of peripheral nerve fiber regeneration. Here we have used it for investigating the specificity of axonal regeneration in mixed nerves of the rat forelimb model. The left median and ulnar nerves, in adult female rats, were transected and repaired(More)
The assessment of recovery of the neuromuscular function following nerve lesion and repair is one of the main goals of peripheral nerve researchers. The forelimb model has recently seen an increase in its employment for experimental nerve repair studies especially because of the availability of the grasping test for assessing the functional recovery of one(More)