Pierfrancesco Zilio

Learn More
Neuronal signaling in brain circuits occurs at multiple scales ranging from molecules and cells to large neuronal assemblies. However, current sensing neurotechnologies are not designed for parallel access of signals at multiple scales. With the aim of combining nanoscale molecular sensing with electrical neural activity recordings within large neuronal(More)
Optical beams carrying orbital angular momentum (OAM) can find tremendous applications in several fields. In order to apply these particular beams in photonic integrated devices innovative optical elements have been proposed. Here we are interested in the generation of OAM-carrying beams at the nanoscale level. We design and experimentally demonstrate a(More)
We fabricated and investigated a new configuration of 3D coaxial metallic antennas working in the infrared which combines the strong lateral light scattering of vertical plasmonic structures with the selective spectral transmission of 2D arrays of coaxial apertures. The coaxial structures are fabricated with a top-down method based on a template of hollow(More)
Plasmonic metamolecules have received much interest in the last years because they can produce a wide spectrum of different hybrid optical resonances. Most of the configurations presented so far, however, considered planar resonators lying on a dielectric substrate. This typically yields high damping and radiative losses, which severely limit the(More)
The chemical environment of cells is an extremely complex and multifaceted system that includes many types of proteins, lipids, nucleic acids and various other components. With the final aim of studying these components in detail, we have developed multiband plasmonic antennas, which are suitable for highly sensitive surface enhanced Raman spectroscopy(More)
We report the design of an integrated platform for on-chip electrical transduction of the surface plasmon resonance supported by a nanostructured metal grating. The latter is fabricated on the active area of a GaAs/AlGaAs photo-HEMT and simultaneously works as the electronic gate of the device. The gold plasmonic crystal has a V-groove profile and has been(More)
The exploitation of surface plasmon polaritons has been mostly limited to the visible and near infrared range, due to the low frequency limit for coherent plasmon excitation and the reduction of confinement on the metal surface for lower energies. In this work we show that 3D--out of plane--nanostructures can considerably increase the intrinsic quality of(More)
  • 1