Learn More
Pathways that govern stem cell (SC) function are often subverted in cancer. Here, we report the isolation to near purity of human normal mammary SCs (hNMSCs), from cultured mammospheres, on the basis of their ability to retain the lipophilic dye PKH26 as a consequence of their quiescent nature. PKH26-positive cells possess all the characteristics of hNMSCs.(More)
The biological antagonism between Notch and Numb controls the proliferative/differentiative balance in development and homeostasis. Although altered Notch signaling has been linked to human diseases, including cancer, evidence for a substantial involvement of Notch in human tumors has remained elusive. Here, we show that Numb-mediated control on Notch(More)
Numb is a protein that in Drosophila determines cell fate as a result of its asymmetric partitioning at mitosis. The function of Numb has been linked to its ability to bind and to biologically antagonize Notch, a membrane receptor that also specifies cell fate. The biochemical mechanisms underlying the action of Numb, however, are still largely unknown. The(More)
Myosin XVa (MyoXVa) and its cargo whirlin are implicated in deafness and vestibular dysfunction and have been shown to localize at stereocilia tips and to be essential for the elongation of these actin protrusions [1-4]. Given that whirlin has no known actin-regulatory activity, it remains unclear how these proteins work together to influence stereocilia(More)
We propose a formal language that allows for transposing biological information precisely and rigorously into machine-readable information. This language, which we call Zsyntax (where Z stands for the Greek word zetaomegaeta, life), is grounded on a particular type of non-classical logic, and it can be used to write algorithms and computer programs. We(More)
  • Lorenza Penengo, Marina Mapelli, Andrea G. Murachelli, Stefano Confalonieri, Laura Magri, Andrea Musacchio +3 others
  • 2006
The interaction between ubiquitinated proteins and intracellular proteins harboring ubiquitin binding domains (UBDs) is critical to a multitude of cellular processes. Here, we report that Rabex-5, a guanine nucleotide exchange factor for Rab5, binds to Ub through two independent UBDs. These UBDs determine a number of properties of Rabex-5, including its(More)
Protein ubiquitination has been implicated in the regulation of axonal growth and synaptic plasticity as well as in the pathogenesis of neurodegenerative diseases. Here we show that depolarization-dependent Ca2+ influx into synaptosomes produces a global, rapid (range of seconds), and reversible decrease of the ubiquitinated state of proteins, which(More)
The regulation of filopodia plays a crucial role during neuronal development and synaptogenesis. Axonal filopodia, which are known to originate presynaptic specializations, are regulated in response to neurotrophic factors. The structural components of filopodia are actin filaments, whose dynamics and organization are controlled by ensembles of(More)
Different plasma membrane receptors are internalized through saturable/noncompetitive pathways, suggesting cargo-specific regulation. Here, we report that TTP (SH3BP4), a SH3-containing protein, specifically regulates the internalization of the transferrin receptor (TfR). TTP interacts with endocytic proteins, including clathrin, dynamin, and the TfR, and(More)
  • Chiara Luise, Maria Capra, Maddalena Donzelli, Giovanni Mazzarol, Maria Giovanna Jodice, Paolo Nuciforo +3 others
  • 2011
BACKGROUND Deubiquitinating enzymes (DUBs) are proteases that process ubiquitin (Ub) or ubiquitin-like gene products, remodel polyubiquitin(-like) chains on target proteins, and counteract protein ubiquitination exerted by E3 ubiquitin-ligases. A wealth of studies has established the relevance of DUBs to the control of physiological processes whose(More)