Learn More
BACKGROUND Kinetochores are large multiprotein complexes indispensable for proper chromosome segregation. Although Drosophila is a classical model organism for studies of chromosome segregation, little is known about the organization of its kinetochores. METHODOLOGY/PRINCIPAL FINDINGS We employed bioinformatics, proteomics and cell biology methods to(More)
Drosophila imaginal discs are specified and patterned during embryonic and larval development, resulting in each cell acquiring a specific fate in the adult fly. Morphogenesis and differentiation of imaginal tissues, however, does not occur until metamorphosis, when pulses of the steroid hormone ecdysone direct these complex morphogenetic responses. In this(More)
The conserved Polo kinase controls multiple events in mitosis and cytokinesis. Although Polo-like kinases are regulated by phosphorylation and proteolysis, control of subcellular localization plays a major role in coordinating their mitotic functions. This is achieved largely by the Polo-Box Domain, which binds prephosphorylated targets. However, it remains(More)
The contractile ring is a highly dynamic structure, but how this dynamism is accomplished remains unclear. Here, we report the identification and analysis of a novel Drosophila gene, sticky (sti), essential for cytokinesis in all fly proliferating tissues. sti encodes the Drosophila orthologue of the mammalian Citron kinase. RNA interference-mediated(More)
Anillin, one of the first factors recruited to the cleavage site during cytokinesis, interacts with actin, myosin II and septins, and is essential for proper organization of the actomyosin contractile ring. We employed affinity-purification methodology coupled with mass spectrometry to identify Anillin-interacting molecules in Drosophila cells. We isolated(More)
BACKGROUND Approximately one-third of the Drosophila kinome has been ascribed some cell-cycle function. However, little is known about which of its 117 protein phosphatases (PPs) or subunits have counteracting roles. RESULTS We investigated mitotic roles of PPs through systematic RNAi. We found that G(2)-M progression requires Puckered, the JNK MAP-kinase(More)
In Drosophila, peaks of the titer of the steroid hormone ecdysone act as molecular signals that trigger all the major developmental transitions occurring along the life cycle. The EcR/USP heterodimer, known to constitute the functional ecdysone receptor, binds with high affinity to specific target sequences, the ecdysone response elements (EcREs), whose(More)
The ingression of a cleavage furrow separates the two daughter cells at the end of cell division. In many organisms this furrow ingression is driven by the assembly and contraction of actomyosin filaments, forming a contractile ring. To achieve a successful cytokinesis, these actomyosin filaments need to be assembled in an organized manner. For this(More)
Cytokinesis controls the proper segregation of nuclear and cytoplasmic materials at the end of cell division. The chromosomal passenger complex (CPC) has been proposed to monitor the final separation of the two daughter cells at the end of cytokinesis in order to prevent cell abscission in the presence of DNA at the cleavage site, but the precise molecular(More)
Cytokinesis partitions cytoplasmic and genomic materials at the end of cell division. Failure in this process causes polyploidy, which in turn can generate chromosomal instability, a hallmark of many cancers. Successful cytokinesis requires cooperative interaction between contractile ring and central spindle components, but how this cooperation is(More)