Pichao Wang

Learn More
In this paper, we propose to adopt ConvNets to recognize human actions from depth maps on relatively small datasets based on Depth Motion Maps (DMMs). In particular, three strategies are developed to effectively leverage the capability of ConvNets in mining discriminative features for recognition. Firstly, different viewpoints are mimicked by rotating(More)
Human action recognition from RGB-D (Red, Green, Blue and Depth) data has attracted increasing attention since the first work reported in 2010. Over this period, many benchmark datasets have been created to facilitate the development and evaluation of new algorithms. This raises the question of which dataset to select and how to use it in providing a fair(More)
—Recently, mid-level features have shown promising performance in computer vision. Mid-level features learned by incorporating class-level information are potentially more dis-criminative than traditional low-level local features. In this paper, an effective method is proposed to extract mid-level features from Kinect skeletons for 3D human action(More)
In this paper, a novel direction of arrival (DOA) estimation algorithm called the Toeplitz fourth order cumulants multiple signal classification method (TFOC-MUSIC) algorithm is proposed through combining a fast MUSIC-like algorithm termed the modified fourth order cumulants MUSIC (MFOC-MUSIC) algorithm and Toeplitz approximation. In the proposed algorithm,(More)
This paper addresses the problem of continuous gesture recognition from sequences of depth maps using convolutional neutral networks (ConvNets). The proposed method first segments individual gestures from a depth sequence based on quantity of movement (QOM). For each segmented gesture, an Improved Depth Motion Map (IDMM), which converts the depth sequence(More)
This paper proposes a new framework for RGB-D-based action recognition that takes advantages of hand-designed features from skeleton data and deeply learned features from depth maps, and exploits effectively both the local and global temporal information. Specifically, depth and skeleton data are firstly augmented for deep learning and making the(More)
Online action recognition aims to recognize actions from unsegmented streams of data in a continuous manner. One of the challenges in online recognition is the accumulation of evidence for decision making. This paper presents a fast and efficient online method to recognize actions from a stream of noisy skeleton data. The method adopts a covari-ance(More)
—Recently, deep learning approach has achieved promising results in various fields of computer vision. In this paper, a new framework called Hierarchical Depth Motion Maps (HDMM) + 3 Channel Deep Convolutional Neural Networks (3ConvNets) is proposed for human action recognition using depth map sequences. Firstly, we rotate the original depth data in 3D(More)