Piar Ali Shar

Learn More
The numerous natural products and their bioactivity potentially afford an extraordinary resource for new drug discovery and have been employed in cancer treatment. However, the underlying pharmacological mechanisms of most natural anticancer compounds remain elusive, which has become one of the major obstacles in developing novel effective anticancer(More)
Though cardiovascular diseases (CVDs) and gastrointestinal disorders (GIDs) are different diseases associated with different organs, they are highly correlated clinically. Importantly, in Traditional Chinese Medicine (TCM), similar treatment strategies have been applied in both diseases. However, the etiological mechanisms underlying them remain unclear.(More)
BACKGROUND Addition and subtraction theory (AST), a basic theory of herb combination in traditional Chinese medicine (TCM), is often used to add or subtract the "fundamental formulae" to generate more targeted prescriptions. This theory plays a core role in individualized medicine and compound compatibility of TCM. However, the mechanisms underlying AST(More)
As a rich natural resource for drug discovery, Traditional Chinese Medicine (TCM) plays an important role in complementary and alternative medical systems. TCM shows a daunting complexity of compounds featuring multi-components and multi-targets to cure diseases, which thus always makes it extremely difficult to systematically explain the molecular(More)
Drug target interactions (DTIs) are crucial in pharmacology and drug discovery. Presently, experimental determination of compound-protein interactions remains challenging because of funding investment and difficulties of purifying proteins. In this study, we proposed two in silico models based on support vector machine (SVM) and random forest (RF), using(More)
The present investigation was aimed to determine the general specific combining of the parents and hybrids respectively. Five parents viz. NIAB-78, Chandi, Haridost, CRIS-134 and Shahbaz were used to evolve in ten F1 hybrids through diallel mating design. The seeds of F1 hybrids along with their parents were sown in Randomized complete Block Design (RCBD)(More)
Designing maximally selective ligands that act on individual drug targets with high binding affinity has been the central dogma of drug discovery and development for the past two decades. However, many low-affinity drugs that aim for several targets at the same time are found more effective than the high-affinity binders when faced with complex disease(More)
  • 1