Pia P. Yachi

Learn More
Gammadelta T cell receptor-bearing dendritic epidermal T cells (DETCs) found in murine skin recognize antigen expressed by damaged or stressed keratinocytes. Activated DETCs produce keratinocyte growth factors (KGFs) and chemokines, raising the possibility that DETCs play a role in tissue repair. We performed wound healing studies and found defects in(More)
How T cells translate T cell receptor (TCR) recognition of almost identical pMHC ligands into distinct biological responses has remained enigmatic. Although differences in affinity or off rate are important, they offer at best an incomplete explanation. By using Förster resonance energy transfer (FRET), we have visualized the ligand-induced interaction(More)
It is unclear if the interaction between CD8 and the T cell receptor (TCR)–CD3 complex is constitutive or antigen induced. Here, fluorescence resonance energy transfer microscopy between fluorescent chimeras of CD3ζ and CD8β showed that this interaction was induced by antigen recognition in the immunological synapse. Nonstimulatory endogenous or exogenous(More)
The CD8 coreceptor contributes to the recognition of peptide-MHC (pMHC) ligands by stabilizing the TCR-pMHC interaction and enabling efficient signaling initiation. It is unclear though, which structural elements of the TCR ensure a productive association of the coreceptor. The alpha-chain connecting peptide motif (alpha-CPM) is a highly conserved sequence(More)
T cells are extremely sensitive in their ability to find minute amounts of antigenic peptide in the midst of many endogenous peptides presented on an antigen-presenting cell. The role of endogenous peptides in the recognition of foreign peptide and hence in T cell activation has remained controversial for CD8(+) T cell activation. We showed previously that(More)
The co-receptors CD4 and CD8 are important in the activation of T cells primarily because of their ability to interact with the proteins of the MHC enhancing recognition of the MHC-peptide complex by the T cell receptor (TCR). An antigen-presenting cell presents a small number of antigenic peptides on its MHC molecules, in the presence of a much larger(More)
T cells contact allogeneic antigen presenting cells (APCs) and assemble, at their contact interface, a molecular platform called the immunological synapse. Synapse-based molecules provide directional signals for the T cell--either positive signals, resulting in T-cell activation, or negative signals causing T-cell inactivation or anergy. To better(More)
Protein kinase C η (PKCη) is abundant in T cells and is recruited to the immunological synapse that is formed between a T cell and an antigen-presenting cell; however, its function in T cells is unknown. We showed that PKCη was required for the activation of mature CD8+ T cells through the T cell receptor. Compared with wild-type T cells, PKCη-/- T cells(More)
Bimolecular fluorescence complementation was used to engineer CD8 molecules so that CD8αα and CD8αβ dimers can be independently visualized on the surface of a T cell during antigen recognition. Using this approach, we show that CD8αα is recruited to the immunological synapse almost as well as CD8αβ, but because the kinase Lck associates preferentially with(More)
The kinetics of the interaction between T cell receptor (TCR) and major histocompatibility complex (MHC) has an important role in determining thymocyte-positive and -negative selection in the thymus, as well as in T cell activation. The alpha chain of the TCR is the major player in determining how the TCR fits onto the MHC ligand, and thus has a major role(More)