Learn More
In inflammation, bacterial products and proinflammatory cytokines induce the formation of large amounts of nitric oxide (NO) by inducible nitric oxide synthase (iNOS), and compounds that inhibit NO production have anti-inflammatory effects. In the present study, we systematically investigated the effects of 36 naturally occurring flavonoids and related(More)
Given the established role of Chlamydia spp. as causative agents of both acute and chronic diseases, search for new antimicrobial agents against these intracellular bacteria is required to promote human health. Isoflavones are naturally occurring phytoestrogens, antioxidants and efflux pump inhibitors, but their therapeutic use is limited by poor(More)
Potent drugs are desperately needed to counteract bacterial biofilm infections, especially those caused by gram-positive organisms, such as Staphylococcus aureus. Moreover, anti-biofilm compounds/agents that can be used as chemical tools are also needed for basic in vitro or in vivo studies aimed at exploring biofilms behavior and functionability. In this(More)
Fumonisin B 1 (FB 1) is a mycotoxin produced by the fungus Fusarium verticillioides, which commonly infects corn and other agricultural products. Fusarium species can also be found in moisture-damaged buildings, and therefore there may also be human exposure to Fusarium mycotoxins, including FB 1. FB 1 is known to affect the metabolism of sphingolipids by(More)
The confounding consequences of Helicobacter bilis infection in experimental mice populations are well recognized, but the role of this bacterium in human diseases is less known. Limited data are available on virulence determinants of this species. In Helicobacter pylori, γ-glutamyltranspeptidase (γGT) contributes to the colonization of the gastric mucosa(More)
When single-cell (or suspended) bacteria switch into the biofilm lifestyle, they become less susceptible to antimicrobials, imposing the need for anti-biofilms research. Flavonoids are among the most extensively studied natural compounds with an unprecedented amount of bioactivity claims. Most studies focus on the antibacterial effects against suspended(More)
Previously, we have proposed mupirocin-in-liposomes-in-hydrogel delivery system as advanced delivery system with the potential in treatment of burns. In the current studies, we evaluated the system for its cytotoxicity, ability to prevent biofilm formation, act on the mature biofilms, and finally determined its potential as wound treatment in in vivo mice(More)
We demonstrate in the current work that small cationic antimicrobial β2,2-amino acid derivatives (Mw < 500 Da) are highly potent against Chlamydia pneumoniae at clinical relevant concentrations (< 5 μM, i.e. < 3.4 μg/mL). C. pneumoniae is an atypical respiratory pathogen associated with frequent treatment failures and persistent infections. This(More)
Biofilm formation leads to the failure of antimicrobial therapy. Thus, biofilm prevention is a desirable goal of antimicrobial research. In this study, the efficacy of antibiotics (doxycycline, oxacillin and rifampicin) in preventing Staphylococcus aureus biofilms was investigated using Microtiter Well Plates (MWP) and Drip Flow Reactors (DFR), two models(More)