Learn More
A 100 ns molecular dynamics simulation of penta-alanine in explicit water is performed to study the reversible folding and unfolding of the peptide. Employing a standard principal component analysis (PCA) using Cartesian coordinates, the resulting free-energy landscape is found to have a single minimum, thus suggesting a simple, relatively smooth(More)
Classical molecular dynamics simulations of the folding of alanine peptides in aqueous solution are analyzed by constructing a deterministic model of the dynamics, using methods from nonlinear time series analysis. While the dimension of the free energy landscape increases with system size, a Lyapunov analysis shows that the effective dimension of the(More)
One challenge in computational biophysics and biology is to develop methodologies able to estimate accurately the configurational entropy of macromolecules. Among many methods, the quasiharmonic approximation (QH) is most widely used as it is simple in both theory and implementation. However, it has been shown that this method becomes inaccurate by(More)
Nonfibrillar soluble oligomers, which are intermediates in the transition from monomers to amyloid fibrils, may be the toxic species in Alzheimer's disease. To monitor the early events that direct assembly of amyloidogenic peptides we probe the dynamics of formation of (Abeta(16-22))(n) by adding a monomer to a preformed (Abeta(16-22))(n-1) (n = 4-6)(More)
It has recently been suggested by Mu et al. [Proteins 58, 45 (2005)] to use backbone dihedral angles instead of Cartesian coordinates in a principal component analysis of molecular dynamics simulations. Dihedral angles may be advantageous because internal coordinates naturally provide a correct separation of internal and overall motion, which was found to(More)
The phi,psi backbone angle distribution of small homopolymeric model peptides is investigated by a joint molecular dynamics (MD) simulation and heteronuclear NMR study. Combining the accuracy of the measured scalar coupling constants and the atomistic detail of the all-atom MD simulations with explicit solvent, the thermal populations of the peptide(More)
The free energy landscape and the folding mechanism of the C-terminal beta-hairpin of protein G is studied by extensive replica exchange molecular dynamics simulations (40 replicas and 340 ns total simulation time), using the GROMOS96 force field and the SPC explicit water solvent. The study reveals that the system preferentially adopts a beta-hairpin(More)
A systematic approach to construct a low-dimensional free energy landscape from a classical molecular dynamics (MD) simulation is presented. The approach is based on the recently proposed dihedral angle principal component analysis (dPCA), which avoids artifacts due to the mixing of internal and overall motions in Cartesian coordinates and circumvents(More)
We investigate energy transport through an alpha-aminoisobutyric acid-based 3(10)-helix dissolved in chloroform in a combined experimental-theoretical approach. Vibrational energy is locally deposited at the N terminus of the helix by ultrafast internal conversion of a covalently attached, electronically excited, azobenzene moiety. Heat flow through the(More)