Phuoc Long Truong

Learn More
Plasmonic nanomaterials reveal noble optical properties for next-generation biosensors. Nanoplasmonic biosensors have become simple, sensitive, smart, and consistent with advanced healthcare programs requirements. Notably, an individual nanoparticle analysis can yield unique target information, based on which the next-generation biosensor is revolutionary(More)
We report a simple, ultra-sensitive, and straightforward method for non-labeling detection of a cancer biomarker, using Rayleigh light scattering spectroscopy of the individual nanosensor based on antibody-antigen recognition and localized surface plasmon resonance (LSPR) λ(max) shifts. By experimentally measuring the refractive index sensitivity of Au(More)
Herein, we present the use of a single gold nanorod sensor for detection of diseases on an antibody-functionalized surface, based on antibody-antigen interaction and the localized surface plasmon resonance (LSPR) λ(max) shifts of the resonant Rayleigh light scattering spectra. By replacing the cetyltrimethylammonium bromide (CTAB), a tightly packed(More)
Scientific interest in nanotechnology is driven by the unique and novel properties of nanometer-sized metallic materials such as the strong interaction between the conductive electrons of the nanoparticles and the incident light, caused by localized surface plasmon resonances (LSPRs). In this article, we analysed the relationship of the Rayleigh scattering(More)
We report the use of plasmonic responses of single gold nanoparticles (AuNPs) with various sizes for the analysis of biomolecular recognition. We also describe the relationship between particle size and plasmonic response induced by the binding of receptors and target analytes. To investigate the plasmonic response of AuNPs, Rayleigh light scattering(More)
A strategy for attomolar-level detection of small molecule-size proteins is reported based on Rayleigh light scattering spectroscopy of individual nanoplasmonic aptasensors by exploiting the outstanding characteristics of gold colloids to amplify the nontransparent resonant signal at ultralow analyte concentrations. The fabrication method utilizes(More)
  • 1