Learn More
Simultaneous electricity generation and distillery wastewater (DWW) treatment were accomplished using a thermophilic microbial fuel cell (MFC). The results suggest that thermophilic MFCs, which require less energy for cooling the DWW, can achieve high efficiency for electricity generation and also reduce sulfate along with oxidizing complex organic(More)
We introduce a high-performance microbial fuel cell (MFC) that was operated using a 0.1 M bicarbonate buffer as the cathodic electrolyte. The MFC had a 136.42 mW/m(2) maximum power density under continuous feeding of 5 mM acetate as fuel. Results of the electrode potential measurements showed that the cathode potential of the bicarbonate-buffered condition(More)
The interface resistances between an anion exchange membrane (AEM) and the solution electrolyte were measured for low buffer (or ionic strength) of electrolytes typical of microbial fuel cells (MFCs). Three AEMs (AFN, AM-1, and ACS) having different properties were tested in a flat-plate MFC to which 5-mM acetate was fed to the anode and an air-saturated(More)
We report the electrochemical characterization and microbial community analysis of closed circuit microbial fuel cells (CC-MFCs) and open circuit (OC) cells continuously fed with propionate as substrate. Differences in power output between MFCs correlated with their polarization behavior, which is related to the maturation of the anodophilic communities.(More)
An alternative method for determining the charge transfer resistance and double-layer capacitance of microbial fuel cells (MFCs), easily implemented without a potentiostat, was developed. A dynamic model with two parameters, the charge transfer resistance and double-layer capacitance of electrodes, was derived from a linear differential equation to depict(More)
Artificial lakes, initially built in estuaries for positive purposes such as flood prevention and providing irrigation water, have been found to have negative impacts including blocking tidal cycles, disappearance of brackish water zones, sediment increase, water pollution, change of microbial diversity inhabiting patterns, and a decline in fish diversity.(More)
  • 1