Learn More
When the head rotates, the image of the visual world slips across the retina. A dedicated set of retinal ganglion cells (RGCs) and brainstem visual nuclei termed the "accessory optic system" (AOS) generate slip-compensating eye movements that stabilize visual images on the retina and improve visual performance. Which types of RGCs project to each of the(More)
On-Off direction-selective retinal ganglion cells (DSGCs) encode the axis of visual motion. They respond strongly to an object moving in a preferred direction and weakly to an object moving in the opposite, "null," direction. Historically, On-Off DSGCs were classified into four subtypes according to their directional preference (anterior, posterior,(More)
How specific features in the environment are represented within the brain is an important unanswered question in neuroscience. A subset of retinal neurons, called direction-selective ganglion cells (DSGCs), are specialized for detecting motion along specific axes of the visual field. Despite extensive study of the retinal circuitry that endows DSGCs with(More)
How axons select their appropriate targets in the brain remains poorly understood. Here, we explore the cellular mechanisms of axon target matching in the developing visual system by comparing four transgenic mouse lines, each with a different population of genetically labeled retinal ganglion cells (RGCs) that connect to unique combinations of brain(More)
Neural circuits consist of highly precise connections among specific types of neurons that serve a common functional goal. How neurons distinguish among different synaptic targets to form functionally precise circuits remains largely unknown. Here, we show that during development, the adhesion molecule cadherin-6 (Cdh6) is expressed by a subset of retinal(More)
The mammalian eye-to-brain pathway includes more than 20 parallel circuits, each consisting of precise long-range connections between specific sets of retinal ganglion cells (RGCs) and target structures in the brain. The mechanisms that drive assembly of these parallel connections and the functional implications of their specificity remain unresolved. Here(More)
How specific features in the environment are represented within the brain is an important unanswered question in neuroscience. A subset of retinal neurons, called direction selective ganglion cells (DSGCs) are specialized for detecting motion along specific axes of the visual field 1. Despite extensive study of the retinal circuitry that endows DSGCs with(More)
Axons in the mammalian CNS fail to regenerate after injury. Here we show that if the activity of mouse retinal ganglion cells (RGCs) is increased by visual stimulation or using chemogenetics, their axons regenerate. We also show that if enhancement of neural activity is combined with elevation of the cell-growth-promoting pathway involving mammalian target(More)
  • 1