Phiwayinkosi V Dludla

Learn More
Diabetic cardiomyopathy (DCM) is a disorder of the heart muscle that contributes to cardiovascular deaths in the diabetic population. Excessive generation of free radicals has been directly implicated in the pathogenesis of DCM. The use of antioxidants, through dietary supplementation, to combat increased cellular oxidative stress has gained popularity(More)
SCOPE Energy deprivation in the myocardium is associated with impaired heart function. This study aims to investigate if aspalathin (ASP) can ameliorate hyperglycemic-induced shift in substrate preference and protect the myocardium against cell apoptosis. METHODS AND RESULTS H9c2 cells were exposed to, either normal (5.5 mM) or high (33 mM) glucose(More)
Chronic hyperglycemia is closely associated with impaired substrate metabolism, dysregulated mitochondrial membrane potential, and apoptosis in the diabetic heart. As adult cardiomyocytes display a limited capacity to regenerate following an insult, it is essential to protect the myocardium against the detrimental effects of chronic hyperglycemia. This(More)
Aspalathin (ASP) can protect H9c2 cardiomyocytes against high glucose (HG)-induced shifts in myocardial substrate preference, oxidative stress, and apoptosis. The protective mechanism of ASP remains unknown. However, as one of possible, it is well known that phytochemical flavonoids reduce oxidative stress via nuclear factor (erythroid-derived 2)-like 2(More)
Aspalathin, a C-glucosyl dihydrochalcone, has previously been shown to protect cardiomyocytes against hyperglycemia-induced shifts in substrate preference and subsequent apoptosis. However, the precise gene regulatory network remains to be elucidated. To unravel the mechanism and provide insight into this supposition, the direct effect of aspalathin in an(More)
Type 2 diabetes remains one of the leading causes of death worldwide. Persistent hyperglycemia within a diabetic state is implicated in the generation of oxidative stress and aggravated inflammation that is responsible for accelerated modification of pancreatic beta cell structure. Here we investigated whether a lanosteryl triterpene,(More)
Diabetic cardiomyopathy (DCM) is a disease of heart muscle that remains one of the leading causes of death in diabetic individuals. Shifts in substrate preference resulting in aberrant serum lipid content and enlarged left ventricular wall thickness are well-established characteristics associated with the development of DCM. As underlying mechanisms driving(More)
BACKGROUND Hyperglycaemia-induced oxidative damage is a well-established factor implicated in the development of diabetic cardiomyopathy (DCM) in diabetic individuals. Some of the well-known characteristics of DCM include increased myocardial left ventricular wall thickness and remodelling that result in reduced cardiac efficiency. To prevent this, an(More)
Diabetic patients are at an increased risk of developing heart failure when compared to their non-diabetic counter parts. Accumulative evidence suggests chronic hyperglycemia to be central in the development of myocardial infarction in these patients. At present, there are limited therapies aimed at specifically protecting the diabetic heart at risk from(More)
  • 1