Phillip R. Gordon-Weeks

Learn More
WNT-7a induces axonal spreading and branching in developing cerebellar granule neurons. This effect is mediated through the inhibition of GSK-3beta, a serine/threonine kinase and a component of the WNT pathway. Lithium, an inhibitor of GSK-3beta, mimics WNT-7a in granule cells. Here we examined further the effect of GSK-3beta inhibition on cytoskeletal(More)
We have recently shown that glycogen synthase kinase 3beta (GSK3beta) phosphorylates the microtubule-associated protein (MAP) 1B in an in vitro kinase assay and in cultured cerebellar granule cells. Mapping studies identified a region of MAP1B high in serine-proline motifs that is phosphorylated by GSK3beta. Here we show that COS cells, transiently(More)
Recent experiments show that the microtubule-associated protein (MAP) 1B is a major phosphorylation substrate for the serine/threonine kinase glycogen synthase kinase-3beta (GSK-3beta) in differentiating neurons. GSK-3beta phosphorylation of MAP1B appears to act as a molecular switch regulating the control that MAP1B exerts on microtubule dynamics in(More)
Interactions between dynamic microtubules and actin filaments (F-actin) underlie a range of cellular processes including cell polarity and motility. In growth cones, dynamic microtubules are continually extending into selected filopodia, aligning alongside the proximal ends of the F-actin bundles. This interaction is essential for neuritogenesis and(More)
In previous work we characterized a brain derived collapsing factor that induces the collapse of dorsal root ganglion growth cones in culture (Raper and Kapfhammer, 1990). To determine how the growth cone cytoskeleton is rearranged during collapse, we have compared the distributions of F-actin and microtubules in normal and partially collapsed growth cones.(More)
The ionotropic type-A and type-C receptors for the neurotransmitter gamma-aminobutyric acid (GABA(A) and GABA(C) receptors) are the principal sites of fast synaptic inhibition in the central nervous system, but it is not known how these receptors are localized at GABA-dependent synapses. GABA(C) receptors, which are composed of rho-subunits, are expressed(More)
It has been recognized for a long time that the neuronal cytoskeleton plays an important part in neurite growth and growth cone pathfinding, the mechanism by which growing axons find an appropriate route through the developing embryo to their target cells. In the growth cone, many intracellular signaling pathways that are activated by guidance cues converge(More)
Valproate (VPA) and lithium have been used for many years in the treatment of manic depression. However, their mechanisms of action remain poorly understood. Recent studies suggest that lithium and VPA inhibit GSK-3beta, a serine/threonine kinase involved in the insulin and WNT signaling pathways. Inhibition of GSK-3beta by high concentrations of lithium(More)
In pheochromocytoma 12 (PC12) cells and sympathetic neurons, nerve growth factor (NGF) engagement with the tropomyosin-related tyrosine kinase (TrkA) receptor activates the serine/threonine kinase glycogen synthase kinase 3beta (GSK3beta), enabling it to phosphorylate the microtubule-associated protein 1B (MAP1B). GSK3beta phosphorylation of MAP1B acts as a(More)
To examine the role of microtubules in growth cone turning, we have compared the microtubule organization in growth cones advancing on uniform laminin substrates with their organization in growth cones turning at a laminin-tenascin border. The majority (82%) of growth cones on laminin had a symmetrical microtubule organization, in which the microtubules(More)