Phillip M. Wu

Learn More
Mycobacteriophages are viruses that infect mycobacterial hosts such as Mycobacterium smegmatis and Mycobacterium tuberculosis. All mycobacteriophages characterized to date are dsDNA tailed phages, and have either siphoviral or myoviral morphotypes. However, their genetic diversity is considerable, and although sixty-two genomes have been sequenced and(More)
The recent discovery of superconductivity with relatively high transition temperature T c in the layered iron-based quaternary oxypnictides 1 La[ O 1-x F x ] FeAs was a real surprise. The excitement generated can be seen by the number of subsequent works 2-8 published within a very short period of time. Although there exists superconductivity in alloy 9(More)
The recent discovery of superconductivity with relatively high transition temperature (Tc) in the layered iron-based quaternary oxypnictides La[O(1-x)F(x)] FeAs by Kamihara et al. [Kamihara Y, Watanabe T, Hirano M, Hosono H (2008) Iron-based layered superconductor La[O1-xFx] FeAs (x = 0.05-0.12) with Tc = 26 K. J Am Chem Soc 130:3296-3297.] was a real(More)
Efficient light-emitting diodes and photovoltaic energy-harvesting devices are expected to play an important role in the continued efforts towards sustainable global power consumption. Semiconductor nanowires are promising candidates as the active components of both light-emitting diodes and photovoltaic cells, primarily due to the added freedom in device(More)
One-dimensional nanostructure arrays can show fascinatingly different, tunable optical response compared to bulk systems. Here we study theoretically and demonstrate experimentally how to engineer the reflection and absorption of light in epitaxially grown vertical arrays of InAs nanowires (NWs). A striking observation is optically visible colors of the(More)
An aluminum nanowire switches from superconducting to normal as the current is increased in an upsweep. The switching current (I(s)) averaged over upsweeps approximately follows the depairing critical current (I(c)) but falls below it. Fluctuations in I(s) exhibit three distinct regions of behaviors and are nonmonotonic in temperature: saturation well below(More)
We report on temperature-dependent charge transport in heavily doped Mn(+)-implanted GaAs nanowires. The results clearly demonstrate that the transport is governed by temperature-dependent hopping processes, with a crossover between nearest neighbor hopping and Mott variable range hopping at about 180 K. From detailed analysis, we have extracted(More)
Magnetic domain walls are boundaries between regions with different configurations of the same magnetic order. In a magnetic insulator, where the magnetic order is tied to its bulk insulating property, it has been postulated that electrical properties are drastically different along the domain walls, where the order is inevitably disturbed. Here we report(More)
Nanostructures have many material, electronic, and optical properties that are not found in bulk systems and that are relevant for technological applications. For example, nanowires realized from III-V semiconductors can be grown into a wurtzite crystal structure. This crystal structure does not naturally exist in bulk where these materials form the(More)
We report the observation of a thermoelectric power factor in InAs nanowires that exceeds that predicted by a single-band bulk model by up to an order of magnitude at temperatures below about 20 K. We attribute this enhancement effect not to the long-predicted 1D subband effects but to quantum-dot-like states that form in electrostatically nonuniform(More)