Phillip M. Duxbury

Learn More
BACKGROUND Selective control in a population is the ability to control a member of the population while leaving the other members relatively unaffected. The concept of selective control is developed using cell death or apoptosis in heterogeneous cell populations as an example. Control of apoptosis is essential in a variety of therapeutic environments,(More)
Effective therapy of complex diseases requires control of highly nonlinear complex networks that remain incompletely characterized. In particular, drug intervention can be seen as control of cellular network activity. Identification of control parameters presents an extreme challenge due to the combinatorial explosion of control possibilities in combination(More)
Traditionally the dispersion of particles in polymeric materials has proven difficult and frequently results in phase separation and agglomeration. We show that thermodynamically stable dispersion of nanoparticles into a polymeric liquid is enhanced for systems where the radius of gyration of the linear polymer is greater than the radius of the(More)
Using optical, TEM, and ultrafast electron diffraction experiments we find that single crystal VO(2) microbeams gently placed on insulating substrates or metal grids exhibit different behaviors, with structural and metal-insulator transitions occurring at the same temperature for insulating substrates, while for metal substrates a new monoclinic metal phase(More)
Cells are regulated by networks of controllers having many targets, and targets affected by many controllers, in a "many-to-many" control structure. Here we study several of these bipartite (two-layer) networks. We analyze both naturally occurring biological networks (composed of transcription factors controlling genes, microRNAs controlling mRNA(More)
Advances in materials science and molecular biology followed rapidly from the ability to characterize atomic structure using single crystals. Structure determination is more difficult if single crystals are not available. Many complex inorganic materials that are of interest in nanotechnology have no periodic long-range order and so their structures cannot(More)
Vanadium dioxide (VO 2) is a promising reconfigurable optical material and has long been a focus of condensed matter research owing to its distinctive semiconductor-to-metal phase transition (SMT), a feature that has stimulated recent development of thermally reconfigurable photonic, plasmonic, and metamaterial structures. Here, we integrate VO 2 onto(More)
We show that the infinite percolating cluster (with density P ∞) of central-force networks is composed of: a fractal stress-bearing backbone (P B) and; rigid but unstressed " dangling ends " which occupy a finite volume-fraction of the lattice (P D). Near the rigidity threshold p * , there is then a first-order transition in P ∞ = P D + P B , while P B , is(More)