Phillip M. Duxbury

Learn More
Reconstruction of complex structures is an inverse problem arising in virtually all areas of science and technology, from protein structure determination to bulk heterostructure solar cells and the structure of nanoparticles. We cast this problem as a complex network problem where the edges in a network have weights equal to the Euclidean distance between(More)
BACKGROUND Selective control in a population is the ability to control a member of the population while leaving the other members relatively unaffected. The concept of selective control is developed using cell death or apoptosis in heterogeneous cell populations as an example. Control of apoptosis is essential in a variety of therapeutic environments,(More)
Effective therapy of complex diseases requires control of highly nonlinear complex networks that remain incompletely characterized. In particular, drug intervention can be seen as control of cellular network activity. Identification of control parameters presents an extreme challenge due to the combinatorial explosion of control possibilities in combination(More)
We show that the geometry of minimum spanning trees (MST) on random graphs is universal. Because of this geometric universality, we are able to characterize the energy of MST using a scaling distribution [P(epsilon)] found using uniform disorder. We show that the MST energy for other disorder distributions is simply related to P(epsilon). We discuss the(More)
Advances in materials science and molecular biology followed rapidly from the ability to characterize atomic structure using single crystals. Structure determination is more difficult if single crystals are not available. Many complex inorganic materials that are of interest in nanotechnology have no periodic long-range order and so their structures cannot(More)
Computational techniques for nanostructure determination of substances that resist standard crystallographic methods are often laborious processes starting from initial guess solutions not derived from experimental data. The Liga algorithm can create nanostructures using only lists of lengths or distances between atom pairs, providing an experimental basis(More)
Traditionally the dispersion of particles in polymeric materials has proven difficult and frequently results in phase separation and agglomeration. We show that thermodynamically stable dispersion of nanoparticles into a polymeric liquid is enhanced for systems where the radius of gyration of the linear polymer is greater than the radius of the(More)
Using optical, TEM, and ultrafast electron diffraction experiments we find that single crystal VO(2) microbeams gently placed on insulating substrates or metal grids exhibit different behaviors, with structural and metal-insulator transitions occurring at the same temperature for insulating substrates, while for metal substrates a new monoclinic metal phase(More)
Cells are regulated by networks of controllers having many targets, and targets affected by many controllers, in a "many-to-many" control structure. Here we study several of these bipartite (two-layer) networks. We analyze both naturally occurring biological networks (composed of transcription factors controlling genes, microRNAs controlling mRNA(More)
Characterizing and understanding the emergence of multiple macroscopically ordered electronic phases through subtle tuning of temperature, pressure, and chemical doping has been a long-standing central issue for complex materials research. We report the first comprehensive studies of optical doping-induced emergence of stable phases and metastable hidden(More)