Phillip B. Messersmith

Learn More
We report a method to form multifunctional polymer coatings through simple dip-coating of objects in an aqueous solution of dopamine. Inspired by the composition of adhesive proteins in mussels, we used dopamine self-polymerization to form thin, surface-adherent polydopamine films onto a wide range of inorganic and organic materials, including noble metals,(More)
The adhesive strategy of the gecko relies on foot pads composed of specialized keratinous foot-hairs called setae, which are subdivided into terminal spatulae of approximately 200 nm (ref. 1). Contact between the gecko foot and an opposing surface generates adhesive forces that are sufficient to allow the gecko to cling onto vertical and even inverted(More)
Mussels attach to solid surfaces in the sea. Their adhesion must be rapid, strong, and tough, or else they will be dislodged and dashed to pieces by the next incoming wave. Given the dearth of synthetic adhesives for wet polar surfaces, much effort has been directed to characterizing and mimicking essential features of the adhesive chemistry practiced by(More)
3,4-Dihydroxyphenylalanine (DOPA) residues are known for their ability to impart adhesive and curing properties to mussel adhesive proteins. In this paper, we report the preparation of linear and branched DOPA-modified poly(ethylene glycol)s (PEG-DOPAs) containing one to four DOPA endgroups. Gel permeation chromatography-multiple-angle laser light(More)
Nature has evolved materials that possess mechanical properties surpassing many man-made composites. Bones, teeth, spider silk, or nacre, are just a few well-known examples of biomaterials that exhibit exceptionally high tensile strengths, hardness, or toughness. [1–6] These remarkable properties have driven scientists to study and model their architectures(More)
A new biomimetic strategy for modification of biomaterial surfaces with poly(ethylene glycol) (PEG) was developed. The strategy exploits the adhesive characteristics of 3,4-dihydroxyphenylalanine (DOPA), an important component of mussel adhesive proteins, to anchor PEG onto surfaces, rendering the surfaces resistant to cell attachment. Linear(More)
The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Abstract Surface modification is one of the most important techniques in modern science and engineering. The facile introduction of a wide variety of desired properties onto virtually any material surface is an ultimate goal in surface(More)
In the present study, we have utilized X-ray photoelectron spectroscopy (XPS), spectroscopic ellipsometry (ELM), and optical waveguide lightmode spectroscopy (OWLS) to examine the surface adsorption and protein resistance behavior of bio-inspired polymers consisting of poly(ethylene glycol) (PEG) conjugated to peptide mimics of mussel adhesive proteins.(More)
Short peptide substrates with high specificity toward transglutaminase (TGase) enzyme were designed, characterized, and coupled to a biocompatible polymer, allowing for rapid enzymatic cross-linking of peptide-polymer conjugates into hydrogels. Eight acyl acceptor Lys-peptide substrates and three acyl donor Gln-peptide substrates were rationally designed(More)