Learn More
We evaluate the prediction accuracy of models designed using different classification methods depending on the technique used to select variables, and we study the relationship between the structure of the models and their ability to correctly predict financial failure. We show that a neural network based model using a set of variables selected with a(More)
This experimental study examined the lesions produced by a hatchet on human bones (tibiae). A total of 30 lesions were produced and examined macroscopically (naked eye) and by stereomicroscopy. 13 of them were also analyzed using scanning electron microscopy. The general shape of the lesion, both edges, both walls, the kerf floor and the extremities were(More)
This study attempts to show how a Kohonen map can be used to improve the temporal stability of the accuracy of a financial failure model. Most models lose a significant part of their ability to generalize when data used for estimation and prediction purposes are collected over different time periods. As their lifespan is fairly short, it becomes a real(More)
The measurement of the femoral head is usually considered an interesting variable for the sex determination of skeletal remains. To date, there are few published reference measurements of the femoral head in a modern European population for the purpose of sex determination. In this study, 116 femurs from 58 individuals of the South of France (Nice Bone(More)
Of the methods used to build bankruptcy prediction models in the last twenty years, neural networks are among the most challenging. Despite the characteristics of neural networks, most of the research done until now has not taken them into consideration for building financial failure models, nor for selecting the variables to be included in the models. The(More)
This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may(More)