Philippe Tamarat

Learn More
Ambient optical detection of labeled molecules is limited for fluorescent dyes by photobleaching and for semiconducting nanoparticles by "blinking" effects. Because nanometer-sized metal particles do not optically bleach, they may be useful optical labels if suitable detection signals can be found. We demonstrate far-field optical detection of gold colloids(More)
Coherent population trapping is demonstrated in single nitrogen-vacancy centers in diamond under optical excitation. For sufficient excitation power, the fluorescence intensity drops almost to the background level when the laser modulation frequency matches the 2.88 GHz splitting of the ground states. The results are well described theoretically by a(More)
We performed a visualization of membrane proteins labeled with 10-nm gold nanoparticles in cells, using an all-optical method based on photothermal interference contrast. The high sensitivity of the method and the stability of the signals allows 3D imaging of individual nanoparticles without the drawbacks of photobleaching and blinking inherent to(More)
Spectroscopically resolved emission from single nanocrystals at cryogenic temperatures provides unique insight into physical processes that occur within these materials. At low temperatures, the emission spectra collapse to narrow lines, revealing a rich spectroscopic landscape and unexpected properties, completely hidden at the ensemble level. Since these(More)
Charged quantum dots provide an important platform for a range of emerging quantum technologies. Colloidal quantum dots in particular offer unique advantages for such applications (facile synthesis, manipulation and compatibility with a wide range of environments), especially if stable charged states can be harnessed in these materials. Here we engineer the(More)
  • 1