Philippe Sautet

Learn More
A good heterogeneous catalyst for a given chemical reaction very often has only one specific type of surface site that is catalytically active. Widespread methodologies such as Sabatier-type activity plots determine optimal adsorption energies to maximize catalytic activity, but these are difficult to use as guidelines to devise new catalysts. We introduce(More)
The understanding at a molecular scale of the reactive elementary steps on the surface of a solid catalyst is of large importance in the field of heterogeneous catalysis, in the perspective of the knowledge-based design of new and improved catalytic systems. There are however crucial preliminary questions: what is the structure of the catalyst's surface ?(More)
The process of grafting H(3)PMo(12)O(40) onto silica surfaces is studied using periodic density functional theory methods. For surfaces with a high hydroxyl coverage, the hydroxyl groups are consumed by the polyoxometalate protons, resulting in water formation and the creation of a covalent bond between the polyoxometalate and the surface, and mostly no(More)
We analysed the dehydroxylation of 001, 101, and 111 β-cristobalite surfaces using the periodic density functional theory method and established the OH density stability diagrams of these surfaces as a function of temperature and water partial pressure. Our calculations suggest that important surface reconstructions, involving SiO(2) unit migrations, are(More)
Magnetochemistry recently emerged as a promising approach to control addressable spin arrays on surfaces. Here we report on the binding, spatial ordering, and magnetic properties of Fe on a highly regular Co-tetraphenylporphyrin (Co-TPP) template and highlight how the Fe controls the magnetism of the Co centers. As evidenced by scanning tunneling microscopy(More)
The methanol-to-olefin (MTO) process allows the conversion of methanol/dimethyl ether into olefins on acidic zeolites via the so-called hydrocarbon pool mechanism. However, the site and mechanism of formation of the first carbon-carbon bond are still a matter of debate. Here, we show that the Lewis acidic Al sites on the 110 facet of γ-Al2O3 can readily(More)
The prediction of a reaction mechanism and the identification of the corresponding chemical intermediates is a major challenge in surface science and heterogeneous catalysis, due to a complex network of elementary steps and surface species. Here we demonstrate how to overcome this difficulty by tracking the temperature dependent formation of the initial(More)
Since CO2 is a readily available feedstock throughout the world, the utilization of CO2 as a C1 building block for the synthesis of valuable chemicals is a highly attractive concept. However, due to its very nature of energy depleted "carbon sink", CO2 has a very low reactivity. Electrocatalysis offers the most attractive means to activate CO2 through(More)
We present a new software to easily perform QM:MM and QM:QM' calculations called QMX. It follows the subtraction scheme and it is implemented in the Atomic Simulation Environment (ASE). Special attention is paid to couple molecular calculations with periodic boundaries approaches. QMX inherits the flexibility and versatility of the ASE package: any(More)
  • 1