Philippe Moewis

Learn More
BACKGROUND Although instability of the knee joint is known to modify gait patterns, the amount that patients compensate for joint laxity during active movements remains unknown. PURPOSE By developing a novel technique to allow the assessment of tibiofemoral kinematics, this study aimed to elucidate the role of passive joint laxity on active tibiofemoral(More)
The in vivo quantification of rotational laxity of the knee joint is of importance for monitoring changes in joint stability or the outcome of therapies. While invasive assessments have been used to study rotational laxity, non-invasive methods are attractive particularly for assessing young cohorts. This study aimed to determine the conditions under which(More)
The assessment of knee joint laxity is clinically important but its quantification remains elusive. Calibrated, low dosage fluoroscopy, combined with registered surfaces and controlled external loading may offer possible solutions for quantifying relative tibio-femoral motion without soft tissue artefact, even in native joints. The aim of this study was to(More)
While the anterior cruciate ligament (ACL) is considered one of the most important ligaments for providing knee joint stability, its influence on rotational laxity is not fully understood and its role in resisting rotation at different flexion angles in vivo remains unknown. In this prospective study, we investigated the relationship between in vivo passive(More)
As the aims of changes in total knee arthroplasty (TKA) designs are to reinstate more natural kinematics, the current study evaluated the in vivo kinematics in patients who underwent a cruciate retaining gradually changing femoral radius (“G-CURVE”) against a cruciate retaining conventional changing femoral radius (“J-CURVE”) geometry TKA design. The(More)
  • 1