Learn More
As a step toward selecting folded proteins from libraries of randomized sequences, we have designed a 'loop entropy reduction'-based phage-display method. The basic premise is that insertion of a long disordered sequence into a loop of a host protein will substantially destabilize the host because of the entropic cost of closing a loop in a disordered(More)
Experiments were designed to explore the tolerance of protein structure and folding to very large insertions of folded protein within a structural domain. Dihydrofolate reductase and beta-lactamase have been inserted in four different positions of phosphoglycerate kinase. The resultant chimeric proteins are all overexpressed, and the host as well as the(More)
Long insertions into a loop of a folded host protein are expected to have destabilizing effects because of the entropic cost associated with loop closure unless the inserted sequence adopts a folded structure with amino- and carboxy-termini in close proximity. A loop entropy reduction screen based on this concept was used in an attempt to retrieve folded(More)
A previous study performed using steady state fluorescence has revealed the existence of residual structures surrounding the two tryptophan residues in an unfolded form of yeast phosphoglycerate kinase [Garcia, P., et al. (1995) Biochemistry 34, 397-404]. In this paper, we present a more detailed characterization of these residual structures, through the(More)
There has been renewed interest in determining the physicochemical properties of denatured states of proteins. In many denatured states there is evidence for the existence of nonrandom configurational distributions. Here we examine the small-angle neutron scattering profile of yeast phosphoglycerate kinase in the native state and in highly denaturing(More)
Repeat proteins have a modular organization and a regular architecture that make them attractive models for design and directed evolution experiments. HEAT repeat proteins, although very common, have not been used as a scaffold for artificial proteins, probably because they are made of long and irregular repeats. Here, we present and validate a consensus(More)
The role of domains as folding units was investigated with a two-domain protein, yeast phosphoglycerate kinase. Each of the domains was produced independently by site-directed mutagenesis. It has been previously demonstrated by several criteria that these domains are able to fold in vivo into a quasi-native structure [Minard et al. (1989a) Protein Eng. 3,(More)
Specific, tight-binding protein partners are valuable helpers to facilitate membrane protein (MP) crystallization, because they can i) stabilize the protein, ii) reduce its conformational heterogeneity, and iii) increase the polar surface from which well-ordered crystals can grow. The design and production of a new family of synthetic scaffolds (dubbed(More)
The South-Paris Yeast Structural Genomics Project aims at systematically expressing, purifying and determining the structure of S. cerevisiae proteins with no detectable homology to proteins of known structure. We brought 250 yeast ORFs to expression in E. coli, but 37% of them form inclusion bodies. This important fraction of proteins that are well(More)
Neocarzinostatin (NCS) is a seven-stranded beta-sandwich protein, the folding of which is similar to that of the variable domains of immunoglobulins (Ig). The investigation of the backbone dynamics of apo-NCS [Izadi-Pruneyre et al. (2001) Protein Sci., 10, 2228-2240] enabled us to identify the involvement of long side-chain residues in maintaining the(More)