Philippe M. D'Onofrio

Learn More
To promote functional recovery after CNS injuries, it is crucial to develop strategies that enhance both neuronal survival and regeneration. Here, we report that caspase-6 is upregulated in injured retinal ganglion cells and that its inhibition promotes both survival and regeneration in these adult CNS neurons. Treatment of rat retinal whole mounts with(More)
Retinal ganglion cells (RGCs) are central nervous system (CNS) neurons that transmit visual information from the retina to the brain. Apoptotic RGC degeneration causes visual impairment that can be modeled by optic nerve crush. Neuronal apoptosis is also a salient feature of CNS trauma, ischemia (stroke), and diseases of the CNS such as Alzheimer's,(More)
Previous studies show that caspase-6 and caspase-8 are involved in neuronal apoptosis and regenerative failure after trauma of the adult central nervous system (CNS). In this study, we evaluated whether caspase-6 or -8 inhibitors can reduce cerebral or retinal injury after ischemia. Cerebral infarct volume, relative to appropriate controls, was(More)
Retinal ganglion cells (RGCs) are neurons that relay visual signals from the retina to the brain. The RGC cell bodies reside in the retina and their fibers form the optic nerve. Full transection (axotomy) of the optic nerve is an extra-retinal injury model of RGC degeneration. Optic nerve transection permits time-kinetic studies of neurodegenerative(More)
Retinal ischemia is a very useful model to study the impact of various cell death pathways, such as apoptosis and necrosis, in the ischemic retina. However, it is important to note that the retina is formed as an outpouching of the diencephalon and is part of the central nervous system. As such, the cell death pathways initiated in response to ischemic(More)
Developing strategies that promote axonal regeneration within the injured CNS is a major therapeutic challenge, as axonal outgrowth is potently inhibited by myelin and the glial scar. Although regeneration can be achieved using the genetic deletion of PTEN, a negative regulator of the mTOR pathway, this requires inactivation prior to nerve injury, thus(More)
Recent studies have identified anti-apoptotic functions for vascular endothelial growth factor (VEGF) in the central nervous system (CNS). However, VEGF therapy has been hampered by a tendency to promote vascular permeability, edema, and inflammation. Recently, engineered zinc finger proteins (ZFPs) that upregulate multiple forms of VEGF in their natural(More)
PURPOSE Retinal ganglion cell (RGC) degeneration is an important cause of visual impairment and can be modeled by optic nerve transection, which causes the death of 90% of RGCs within 14 days postaxotomy. We performed a proteomic study to identify and quantify proteins in the rat retina after optic nerve transection. Our goal was to isolate potential(More)
BACKGROUND A reliable model of ischemia-reperfusion is required to evaluate the efficacy and safety of neuroprotective therapies for stroke. We present a novel reproducible pterygopalatine-ophthalmic artery ligation model of ischemia-reperfusion injury in the retina. METHODS Rats were subjected to ophthalmic artery/meningeal sheath ligation (OAML-standard(More)
Retinal ganglion cells (RGCs) are CNS neurons that output visual information from the retina to the brain, via the optic nerve. The optic nerve can be accessed within the orbit of the eye and completely transected (axotomized), cutting the axons of the entire RGC population. Optic nerve transection is a reproducible model of apoptotic neuronal cell death in(More)