Philippe Ménini

Learn More
The wireless measurement of various physical quantities from the analysis of the RADAR Cross Sections variability of passive electromagnetic sensors is presented. A millimetre-wave Frequency-Modulated Continuous-Wave RADAR is used for both remote sensing and wireless identification of sensors. Long reading ranges (up to some decameters) may be reached at(More)
Wireless sensors market is growing very fast these last years tanks to the availability of cheap, small and efficient micro-sensors, batteries, analog and RF circuits, and to the presence of standardized communication protocols. Even if these active sensors are very attractive for a lot of applications, they suffer from weak energy autonomy and they are not(More)
In this paper, we present the wirelessmeasurement of various physical quantities from the analysis of the radar cross section variability of passive electromagnetic sensors. The technique uses a millimeter frequency-modulated continuous-wave radar for both remote sensing and wireless identification of sensors. Long reading ranges (up to some decameters) are(More)
The integration of a 50-nm-thick layer of an innovative sensitive material on microsensors has been developed based on silicon micro-hotplates. In this study, integration of ZnO:Ga via radio-frequency (RF) sputtering has been successfully combined with a low cost and reliable stencil mask technique to obtain repeatable sensing layers on top of(More)
Wireless sensors market is growing very fast these last years tanks to the availability of cheap, small and efficient micro-sensors, batteries, analog and RF circuits, and to the presence of standardized communication protocols. Even if these active sensors are very attractive for a lot of applications, they suffer from weak energy autonomy and they are not(More)
A general bottom-up modeling strategy for gas sensor response to CO, O(2), H(2)O, and related mixtures exposure is demonstrated. In a first stage, we present first principles calculations that aimed at giving an unprecedented review of basic chemical mechanisms taking place at the sensor surface. Then, simulations of an operating gas sensor are performed(More)
The effects of bias current in the sensing layer of resistive Metal-Oxide (MOX) sensors toward gases have been investigated. The behavior of a WO3 thin film deposited by sputtering has been studied. In a first time, while the working temperature is kept constant, it has been found that tuning the polarization of the MOX layer induces changes on its(More)
A pressure sensor demonstrator has been designed and mounted using a simple analog-digital BiCMOS converter and a capacitive Silicon–Pyrex sensing cell. The measurements as a function of pressure and temperature have enabled to evaluate the efficiency of a ratiometric scheme to self-compensate thermal drifts and nonlinearities. The best demonstrator is(More)
Micrometer-sized hierarchical Sn3 O2 (OH)2 octahedra, which are self-assembled one inside the other, resembling "Russian doll" organization, have been obtained by a metalorganic approach. This synthesis is based on the controlled hydrolysis of [Sn(NMe2 )2 ]2 in the presence of an alkylamine ligand in an organic solvent (THF). The water content of the medium(More)
A metal-organic approach has been employed for the preparation of anisotropic CuO nanoparticles. These nanostructures have been characterized by transmission and high resolution transmission electron microscopy, field-emission scanning electron microscopy, X-ray powder diffraction, Fourier transform infrared spectroscopy and X-ray photoelectron(More)