Philippe Grelu

Learn More
Nonlinear dissipative systems display the full (3+1)D spatiotemporal dynamics of stable optical solitons. We review recent results that were obtained within the complex cubic-quintic Ginzburg-Landau equation model. Numerical simulations reveal the existence of stationary bell-shaped (3+1)D solitons for both anomalous and normal chromatic dispersion regimes,(More)
We show numerically the existence of vibrating soliton pairs that are consistent with observations performed with a passively mode-locked fiber laser. These vibrating pairs are new types of multisoliton complexes that exist in the vicinity of the phase-locked soliton pairs discovered a few years ago [Opt. Lett.27, 966 (2002)]. The pairs are found(More)
We report a novel and intriguing nonlinear dynamics observed in a fiber laser cavity, in which soliton pulses are created from an extended noisy background and drift until they reach a condensed phase comprising several tens of aggregated solitons. This soliton flow can be adjusted with manual cavity tuning, and can even be triggered by the injection of an(More)
We observed, numerically and experimentally, multiple-period pulsations of the soliton parameters in a passively mode-locked fiber laser. Pulsation periods can vary from a few to hundreds of round trips. Short and long period pulsations can appear in combination. The new periods in the soliton modulation appear at bifurcation points related to certain(More)
Dissipative soliton resonance (DSR) occurs in the close vicinity of a hypersurface in the space of parameters of the equation governing propagation in a dissipative nonlinear medium. Pulsed solutions can acquire virtually unlimited energies as soon as the equation parameters converge toward that specific hypersurface. Here we extend previous studies that(More)
What can be the outcome of the interaction between a dissipative soliton pair and a soliton singlet? We report an experimental observation of ???elastic??? collisions as well as ???inelastic??? formation of triplet soliton states in a fiber laser setup. These observations are supported with the numerical simulations based on the dispersion (parameter)(More)
We investigate multiple-soliton pattern formations in a figure-of-eight passively mode-locked fiber laser. Operation in the anomalous dispersion regime with a double-clad fiber amplifier allows generation of up to several hundreds of solitons per round trip. We report the observation of remarkable soliton distributions: soliton gas, soliton liquid, soliton(More)
Measurements of the intensity transfer function of a silica microfiber resonator are shown to follow a wide variety of hysteresis cycles, depending on the cavity detuning and the scanning frequency of the range of input powers. We attribute these observations to a nonlinear phase shift of thermal origin and provide a simple model that reproduces well our(More)
We investigate the intracavity pulse dynamics inside dispersion-managed mode-locked fiber lasers, and show numerically that for a relatively wide range of parameters, pulse compression dynamics in the passive anomalous fiber can be accompanied by a significant enhancement of the spectral width by a factor close to 3. Varying the average cavity dispersion(More)
The phenomenon of dissipative soliton resonance (DSR) predicts that an increase of pulse energy by orders of magnitude can be obtained in laser oscillators. Here, we prove that DSR is achievable in a realistic ring laser cavity using nonlinear polarization evolution as the mode-locking mechanism, whose nonlinear transmission function is adjusted through a(More)