Philippe Godignon

Learn More
The ability to manipulate optical fields and the energy flow of light is central to modern information and communication technologies, as well as quantum information processing schemes. However, because photons do not possess charge, a way of controlling them efficiently by electrical means has so far proved elusive. A promising way to achieve electric(More)
—This paper reports on the fabrication technology and packaging strategy for 300-V 5-A silicon carbide Schottky diodes with a wide temperature operation range capability (between −170 • C and 300 • C). These diodes have been designed for harsh environment space applications such as inner Solar System exploration probes. Different endurance tests have been(More)
Semi-insulating silicon carbide (SiC) is a fully processable semiconductors substrate that is commonly used as an alternative to conventional silicon (Si) in high-power applications. Here we examine the feasibility of using SiC as a substrate for the development of minimally invasive multi-sensor micro-probes in the context of organ monitoring during(More)
Micro-Raman and micro-transmission imaging experiments have been done on epitaxial graphene grown on the C- and Si-faces of on-axis 6H-SiC substrates. On the C-face it is shown that the SiC sublimation process results in the growth of long and isolated graphene ribbons (up to 600 μm) that are strain-relaxed and lightly p-type doped. In this case, combining(More)
Monitoring of ischemia in living tissues is a field of increasing interest in many clinical settings. In this work we report for the first time anywhere the development of needle-shaped, minimally-invasive impedance probes based on silicon carbide (SiC) substrates. An in-vitro comparison of these new devices with Si-based impedance probes demonstrates that(More)