Philippe Delcourt

Learn More
Accumulating data point to K(+) channels as relevant players in controlling cell cycle progression and proliferation of human cancer cells, including prostate cancer (PCa) cells. However, the mechanism(s) by which K(+) channels control PCa cell proliferation remain illusive. In this study, using the techniques of molecular biology, biochemistry,(More)
TRPM8 (melastatine-related transient receptor potential member 8), a member of the transient receptor potential (TRP) superfamily of cation channels, has been shown to be a calcium-channel protein. TRPM8 mRNA has also been shown to be overexpressed in prostate cancer and is considered to play an important role in prostate physiology. This study was designed(More)
Recent cloning of a cold/menthol-sensitive TRPM8 channel (transient receptor potential melastatine family member 8) from rodent sensory neurons has provided the molecular basis for the cold sensation. Surprisingly, the human orthologue of rodent TRPM8 also appears to be strongly expressed in the prostate and in the prostate cancer-derived epithelial cell(More)
Electrophysiological, immunocytochemical, and RT-PCR methods were used to identify a K(+) conductance not yet described in MCF-7 human breast cancer cells. A voltage-dependent and TEA-sensitive K(+) current was the most commonly observed in these cells. The noninactivating K(+) current (I(K)) was insensitive to iberiotoxin (100 nM) and charybdotoxin (100(More)
We have previously reported that the hEAG K(+) channels are responsible for the potential membrane hyperpolarization that induces human breast cancer cell progression into the G1 phase of the cell cycle. In the present study, we evaluate the role and functional expression of the intermediate-conductance Ca(2+)-activated K(+) channel, hIK1-like, in(More)
In a previous work, we have reported that the ionic nature of the outward current recorded in MCF-7 cells was that of a K+ current. In this study, we have identified a Ca2+-activated K+ channel not yet described in MCF-7 human breast cancer cells. In cells arrested in the early G1 (depolarized cells), increasing [Ca2+]i induced both a shift in the I-V curve(More)
UNLABELLED Store-operated calcium entry (SOCE) is the main Ca(2+) influx pathway involved in controlling proliferation of the human hepatoma cell lines Huh-7 and HepG2. However, the molecular nature of the calcium channels involved in this process remains unknown. Huh-7 and HepG2 cells express transient receptor potential canonical 1 (TRPC1) and TRPC6, as(More)
This study investigates the calcium mechanisms involved in growth arrest induced by extracellular ATP in DU-145 androgen-independent human prostate cancer cells. Exposure of DU-145 cells to 100 microM ATP produced an increase in cytoplasmic calcium concentration ([Ca(2+)](i)), due to a mobilization of calcium from the endoplasmic reticulum stores and to(More)
Halima Ouadid-Ahidouch, Morad Roudbaraki, Philippe Delcourt, Ahmed Ahidouch, Nathalie Joury, and Natalia Prevarskaya Laboratoire de Physiologie Cellulaire, Institut National de la Santé et de la Recherche Médicale EMI 0228, SN3, Université des Sciences et Technologies de Lille, 59655 Villeneuve d’Ascq Cédex; Laboratoire de Physiologie Cellulaire et(More)
Castration resistance in prostate cancer (PCa) constitutes an advanced, aggressive disease with poor prognosis, associated with uncontrolled cell proliferation, resistance to apoptosis, and enhanced invasive potential. The molecular mechanisms involved in the transition of PCa to castration resistance are obscure. Here, we report that the nonselective(More)