Learn More
A very common metastatic site for human breast cancer is bone. The traditional bone metastasis model requires human MDA-MB-231 breast carcinoma cell inoculation into the left heart ventricle of nude mice. MDA-MB-231 cells usually develop osteolytic lesions 3-4 weeks after intracardiac inoculation in these animals. Here, we report a new approach to study the(More)
The molecular mechanisms by which tumor cells metastasize to bone are likely to involve invasion, cell adhesion to bone, and the release of soluble mediators from tumor cells that stimulate osteoclast-mediated bone resorption. Bisphosphonates (BPs) are powerful inhibitors of the osteoclast activity and are, therefore, used in the treatment of patients with(More)
BACKGROUND Receptor activator of NFkB (RANK), its ligand (RANKL) and the decoy receptor of RANKL (osteoprotegerin, OPG) play a pivotal role in bone remodeling by regulating osteoclasts formation and activity. RANKL stimulates migration of RANK-expressing tumor cells in vitro, conversely inhibited by OPG. MATERIALS AND METHODS We examined mRNA expression(More)
The role of lysophosphatidic acid (LPA) in cancer is poorly understood. Here we provide evidence for a role of LPA in the progression of breast cancer bone metastases. LPA receptors LPA(1), LPA(2), and LPA(3) were expressed in human primary breast tumors and a series of human breast cancer cell lines. The inducible overexpression of LPA(1) in MDA-BO2 breast(More)
The reasons why tumor cells metastasize to bone remain obscure. There is some evidence to support the theory that integrins (acting as cell surface adhesion receptors) play a role in mediating metastasis in certain organs. Here, we report that overexpression of a functionally active integrin alpha(v)b3 in Chinese hamster ovary (CHO) tumor cells drastically(More)
The molecular mechanisms by which tumor cells induce osteolytic metastases are likely to involve tumor cell adhesion to bone as well as the release of soluble mediators from tumor cells that stimulate osteoclast-mediated bone resorption. Bisphosphonates (BPs) are powerful inhibitors of the osteoclast activity and are, therefore, used in the treatment of(More)
Platelet-derived lysophosphatidic acid (LPA) supports the progression of breast and ovarian cancer metastasis to bone. The mechanisms through which LPA promotes bone metastasis formation are, however, unknown. Here we report that silencing of the type 1 LPA receptor (LPA(1)) in cancer cells blocks the production of tumor-derived cytokines that are potent(More)
We have previously shown that thrombospondin (TSP) is present in normal breast secretions, and high levels of TSP are observed in malignant breast secretions and cytosols. Three genes encoding for three distinct TSPs (TSP1, TSP2, TSP3) have recently been described. In this study, using both immunohistochemistry and in situ hybridization, we report on the(More)
Bisphosphonates (BPs) are used currently in the treatment of patients with bone metastases because these compounds inhibit bone resorption. We examined here the effects of BPs on inhibition of endothelial cell functions in vitro and in vivo. Treatment of endothelial cells with BPs (clodronate, risedronate, ibandronate, and zoledronic acid) reduced(More)
Bisphosphonates are primarily known for their ability to inhibit osteoclast-mediated bone resorption and to slow the release of calcium and other bone minerals into the blood stream. However, recent preclinical research has shown that bisphosphonates also exhibit potent antitumor activity. Bisphosphonates reduce proliferation and induce apoptosis of tumor(More)