Learn More
The bioactive lipid ceramide is produced by the enzyme ceramide synthase, which exists in several isoforms in most eukaryotic organisms. Here, we investigated functional differences between the three ceramide synthase isoforms in Arabidopsis thaliana. The biochemical properties of the three ceramide synthases were investigated by comparing lipid profiles of(More)
Ceramides are central intermediates of sphingolipid metabolism with critical functions in cell organization and survival. They are synthesized on the cytosolic surface of the endoplasmic reticulum (ER) and transported by ceramide transfer protein to the Golgi for conversion to sphingomyelin (SM) by SM synthase SMS1. In this study, we report the(More)
In the genome of Arabidopsis thaliana, two genes were identified encoding isoenzymes for C4-hydroxylation of long chain bases (LCB) in plant sphingolipids. Both predicted proteins consist of 258 amino acid residues (77% identity) which show sequence similarity to di-iron-binding enzymes, such as Sur2p and Erg3p from yeast, involved in oxygen-dependent lipid(More)
Fungal glucosylceramides play an important role in plant-pathogen interactions enabling plants to recognize the fungal attack and initiate specific defense responses. A prime structural feature distinguishing fungal glucosylceramides from those of plants and animals is a methyl group at the C9-position of the sphingoid base, the biosynthesis of which has(More)
Although the yeast Saccharomyces cerevisiae has only one sphingolipid class with a head group based on phosphoinositol, the yeast Pichia pastoris as well as many other fungi have a second class, glucosylceramide, which has a glucose head group. These two sphingolipid classes are in addition distinguished by a characteristic structure of their ceramide(More)
Sphingolipids desaturated at the Delta4-position are important signaling molecules in many eukaryotic organisms, including mammals. In a bioinformatics approach, we now identified a new family of protein sequences from animals, plants, and fungi and characterized these sequences biochemically by expression in Saccharomyces cerevisiae. This resulted in the(More)
Fatty acid desaturases catalyze the introduction of double bonds at specific positions of an acyl chain and are categorized according to their substrate specificity and regioselectivity. The current understanding of membrane-bound desaturases is based on mutant studies, biochemical topology analysis, and the comparison of related enzymes with divergent(More)
Specific amplification of nucleic acid sequences by PCR has been extensively used for the detection of gene rearrangements and gene expression. Although successful amplification of DNA sequences has been carried out with DNA prepared from formalin-fixed, paraffin-embedded (FFPE) tissues, there are only a few reports regarding RNA analysis in this kind of(More)